Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 1;97(9):2020–2026. doi: 10.1172/JCI118637

Early and late stimulation of ob mRNA expression in meal-fed and overfed rats.

R B Harris 1, T G Ramsay 1, S R Smith 1, R C Bruch 1
PMCID: PMC507275  PMID: 8621790

Abstract

ob protein is hypothesized to be a circulating feedback signal in the regulation of energy balance. Obese, overfed rats have high levels of ob mRNA expression and suppressed voluntary food intake, indicating the presence of a potent satiety factor. The objectives of this experiment were to determine whether feeding rats their normal daily intake in three meals, compared with ad libitum feeding, increased ob mRNA expression and to determine the degree of obesity required to stimulate expression of ob mRNA. Rats were fed ad libitum, were tube-fed their normal intake in three meals a day, or were tube-fed twice normal intake, ob mRNA was measured by Northern blot analysis after 0, 2, 7, 14, 21, and 32 d of tube-feeding. After only 2 d ob mRNA was threefold higher in tube-fed animals than in ad libitum controls. By day 21 there was a further increase in ob mRNA expression in overfed rats which were at 130% control weight. These results suggest that a metabolic consequence of meal-feeding increases ob mRNA expression in the absence of increased food intake or weight gain. There is a further increase in ob mRNA expression once significant obesity is established.

Full Text

The Full Text of this article is available as a PDF (209.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Björntorp P., Karlsson M., Pettersson P. Expansion of adipose tissue storage capacity at different ages in rats. Metabolism. 1982 Apr;31(4):366–373. doi: 10.1016/0026-0495(82)90112-3. [DOI] [PubMed] [Google Scholar]
  2. Bray G. A. Obesity, a disorder of nutrient partitioning: the MONA LISA hypothesis. J Nutr. 1991 Aug;121(8):1146–1162. doi: 10.1093/jn/121.8.1146. [DOI] [PubMed] [Google Scholar]
  3. Campfield L. A., Smith F. J., Guisez Y., Devos R., Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995 Jul 28;269(5223):546–549. doi: 10.1126/science.7624778. [DOI] [PubMed] [Google Scholar]
  4. Coleman D. L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia. 1973 Aug;9(4):294–298. doi: 10.1007/BF01221857. [DOI] [PubMed] [Google Scholar]
  5. Coleman D. L., Hummel K. P. Effects of parabiosis of normal with genetically diabetic mice. Am J Physiol. 1969 Nov;217(5):1298–1304. doi: 10.1152/ajplegacy.1969.217.5.1298. [DOI] [PubMed] [Google Scholar]
  6. Cusin I., Sainsbury A., Doyle P., Rohner-Jeanrenaud F., Jeanrenaud B. The ob gene and insulin. A relationship leading to clues to the understanding of obesity. Diabetes. 1995 Dec;44(12):1467–1470. doi: 10.2337/diab.44.12.1467. [DOI] [PubMed] [Google Scholar]
  7. Francendese A., DeMartinis F. D. Very small fat cells. II. Initial observations on basal and hormone-stimulated metabolism. J Lipid Res. 1985 Feb;26(2):149–157. [PubMed] [Google Scholar]
  8. Funahashi T., Shimomura I., Hiraoka H., Arai T., Takahashi M., Nakamura T., Nozaki S., Yamashita S., Takemura K., Tokunaga K. Enhanced expression of rat obese (ob) gene in adipose tissues of ventromedial hypothalamus (VMH)-lesioned rats. Biochem Biophys Res Commun. 1995 Jun 15;211(2):469–475. doi: 10.1006/bbrc.1995.1837. [DOI] [PubMed] [Google Scholar]
  9. Halaas J. L., Gajiwala K. S., Maffei M., Cohen S. L., Chait B. T., Rabinowitz D., Lallone R. L., Burley S. K., Friedman J. M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995 Jul 28;269(5223):543–546. doi: 10.1126/science.7624777. [DOI] [PubMed] [Google Scholar]
  10. Hamilton B. S., Paglia D., Kwan A. Y., Deitel M. Increased obese mRNA expression in omental fat cells from massively obese humans. Nat Med. 1995 Sep;1(9):953–956. doi: 10.1038/nm0995-953. [DOI] [PubMed] [Google Scholar]
  11. Harris R. B., Martin R. J. Changes in lipogenesis and lipolysis associated with recovery from reversible obesity in mature female rats. Proc Soc Exp Biol Med. 1989 May;191(1):82–89. doi: 10.3181/00379727-191-42893. [DOI] [PubMed] [Google Scholar]
  12. Harris R. B., Martin R. J. Metabolic response to a specific lipid-depleting factor in parabiotic rats. Am J Physiol. 1986 Feb;250(2 Pt 2):R276–R286. doi: 10.1152/ajpregu.1986.250.2.R276. [DOI] [PubMed] [Google Scholar]
  13. Harris R. B., Martin R. J. Specific depletion of body fat in parabiotic partners of tube-fed obese rats. Am J Physiol. 1984 Aug;247(2 Pt 2):R380–R386. doi: 10.1152/ajpregu.1984.247.2.R380. [DOI] [PubMed] [Google Scholar]
  14. Lupien J. R., Glick Z., Saito M., Bray G. A. Guanosine diphosphate binding to brown adipose tissue mitochondria is increased after single meal. Am J Physiol. 1985 Dec;249(6 Pt 2):R694–R698. doi: 10.1152/ajpregu.1985.249.6.R694. [DOI] [PubMed] [Google Scholar]
  15. MacDougald O. A., Hwang C. S., Fan H., Lane M. D. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9034–9037. doi: 10.1073/pnas.92.20.9034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ogawa Y., Masuzaki H., Isse N., Okazaki T., Mori K., Shigemoto M., Satoh N., Tamura N., Hosoda K., Yoshimasa Y. Molecular cloning of rat obese cDNA and augmented gene expression in genetically obese Zucker fatty (fa/fa) rats. J Clin Invest. 1995 Sep;96(3):1647–1652. doi: 10.1172/JCI118204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parameswaran S. V., Steffens A. B., Hervey G. R., de Ruiter L. Involvement of a humoral factor in regulation of body weight in parabiotic rats. Am J Physiol. 1977 May;232(5):R150–R157. doi: 10.1152/ajpregu.1977.232.5.R150. [DOI] [PubMed] [Google Scholar]
  18. Pelleymounter M. A., Cullen M. J., Baker M. B., Hecht R., Winters D., Boone T., Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995 Jul 28;269(5223):540–543. doi: 10.1126/science.7624776. [DOI] [PubMed] [Google Scholar]
  19. Saladin R., De Vos P., Guerre-Millo M., Leturque A., Girard J., Staels B., Auwerx J. Transient increase in obese gene expression after food intake or insulin administration. Nature. 1995 Oct 12;377(6549):527–529. doi: 10.1038/377527a0. [DOI] [PubMed] [Google Scholar]
  20. Schwartz J. H., Young J. B., Landsberg L. Effect of dietary fat on sympathetic nervous system activity in the rat. J Clin Invest. 1983 Jul;72(1):361–370. doi: 10.1172/JCI110976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Young J. B., Landsberg L. Stimulation of the sympathetic nervous system during sucrose feeding. Nature. 1977 Oct 13;269(5629):615–617. doi: 10.1038/269615a0. [DOI] [PubMed] [Google Scholar]
  22. Young J. B., Landsberg L. Suppression of sympathetic nervous system during fasting. Science. 1977 Jun 24;196(4297):1473–1475. doi: 10.1126/science.867049. [DOI] [PubMed] [Google Scholar]
  23. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J. M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec 1;372(6505):425–432. doi: 10.1038/372425a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES