Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 1;97(9):2045–2050. doi: 10.1172/JCI118640

Inferior petrosal sinus sampling in healthy subjects reveals a unilateral corticotropin-releasing hormone-induced arginine vasopressin release associated with ipsilateral adrenocorticotropin secretion.

K T Kalogeras 1, L K Nieman 1, T C Friedman 1, J L Doppman 1, G B Cutler Jr 1, G P Chrousos 1, R L Wilder 1, P W Gold 1, J A Yanovski 1
PMCID: PMC507278  PMID: 8621793

Abstract

Arginine vasopressin (AVP) acts synergistically with corticotropin-releasing hormone (CRH) to stimulate ACTH release from the anterior pituitary. In a previous study of bilateral simultaneous inferior petrosal sinus (IPS) sampling in healthy human subjects, we observed lateralized ACTH secretion, suggesting lateralized secretion of an ACTH-regulating hypothalamic factor. To investigate this possibility, we measured ACTH, CRH, AVP, and oxytocin (OT) levels in the IPS and the peripheral circulation in nine normal volunteers, before and after 1 microgram/kg i.v. bolus ovine CRH (oCRH). At baseline, ACTH, AVP, and OT exhibited a significant (P < 0.05) two to threefold intersinus gradient (ISG), indicating the existence of a dominant petrosal sinus. Endogenous CRH was undetectable in all samples. Despite similar exogenous oCRH levels in both petrosal sinuses, oCRH caused a significant increase (P < 0.001) in the ACTH ISG (15.8 +/- 5.6, mean +/- SEM), suggesting increased responsiveness of one dominant side of the anterior pituitary. This was associated with an ipsilateral CRH-induced AVP release and a significant increase (P < 0.01) in the AVP ISG (8.6 +/- 2.3), suggesting lateralized AVP secretion by the hypothalamus. Furthermore, the increased AVP ISG after oCRH correlated strongly with the ACTH ISG (r = 0.92, P < 0.01). oCRH administration did not affect OT. These findings suggest that there is a dominant petrosal sinus in healthy volunteers that appears to reflect a dominant side of the adenohypophysis, characterized by increased functional activity and/or responsiveness of the pituitary corticotrophs. This may reflect lateralized hypothalamic and/or suprahypothalamic function resulting in CRH-responsive lateralized secretion of AVP from parvocellular and/or magnocellular axons in the median eminence and the posterior pituitary. Although the functional and teleologic significance of these findings remains to be investigated, our data suggest a novel mechanism for CRH-mediated ACTH release, namely CRH-induced release of AVP which then enhances CRH action on the corticotrophs. Furthermore, our data represent the first direct evidence for the concept of brain lateralization with respect to neuroendocrine secretion.

Full Text

The Full Text of this article is available as a PDF (174.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. B., George B. C., Gonzalez-Auvert C., Dingman J. F. Increased plasma arginine vasopressin in clinical adrenocortical insufficeincy and its inhibition by glucosteroids. J Clin Invest. 1967 Jan;46(1):111–123. doi: 10.1172/JCI105504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amico J. A., Johnston J. M., Vagnucci A. H. Suckling-induced attenuation of plasma cortisol concentrations in postpartum lactating women. Endocr Res. 1994 Feb;20(1):79–87. doi: 10.3109/07435809409035858. [DOI] [PubMed] [Google Scholar]
  3. Antoni F. A. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev. 1986 Nov;7(4):351–378. doi: 10.1210/edrv-7-4-351. [DOI] [PubMed] [Google Scholar]
  4. Baertschi A. J. Portal vascular route from hypophysial stalk/neural lobe to adenohypophysis. Am J Physiol. 1980 Nov;239(5):R463–R469. doi: 10.1152/ajpregu.1980.239.5.R463. [DOI] [PubMed] [Google Scholar]
  5. Bartter F. C., Schwartz W. B. The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med. 1967 May;42(5):790–806. doi: 10.1016/0002-9343(67)90096-4. [DOI] [PubMed] [Google Scholar]
  6. Bergland R. M., Page R. B. Can the pituitary secrete directly to the brain? (Affirmative anatomical evidence). Endocrinology. 1978 May;102(5):1325–1338. doi: 10.1210/endo-102-5-1325. [DOI] [PubMed] [Google Scholar]
  7. Bruhn T. O., Sutton S. W., Plotsky P. M., Vale W. W. Central administration of corticotropin-releasing factor modulates oxytocin secretion in the rat. Endocrinology. 1986 Oct;119(4):1558–1563. doi: 10.1210/endo-119-4-1558. [DOI] [PubMed] [Google Scholar]
  8. Carlson D. E., Nabavian A. M., Brown L. M., Gann D. S. Microinjections of corticotropin-releasing hormone into the medial parabrachial nucleus facilitate plasma vasopressin in cats. Ann N Y Acad Sci. 1993 Jul 22;689:480–483. doi: 10.1111/j.1749-6632.1993.tb55575.x. [DOI] [PubMed] [Google Scholar]
  9. Chiodera P., Salvarani C., Bacchi-Modena A., Spallanzani R., Cigarini C., Alboni A., Gardini E., Coiro V. Relationship between plasma profiles of oxytocin and adrenocorticotropic hormone during suckling or breast stimulation in women. Horm Res. 1991;35(3-4):119–123. doi: 10.1159/000181886. [DOI] [PubMed] [Google Scholar]
  10. Chrousos G. P., Schulte H. M., Oldfield E. H., Gold P. W., Cutler G. B., Jr, Loriaux D. L. The corticotropin-releasing factor stimulation test. An aid in the evaluation of patients with Cushing's syndrome. N Engl J Med. 1984 Mar 8;310(10):622–626. doi: 10.1056/NEJM198403083101004. [DOI] [PubMed] [Google Scholar]
  11. Clich D. Syndrome of inappropriate antidiuretic hormone secretion associated with stress. Lancet. 1982 May 15;1(8281):1131–1132. doi: 10.1016/s0140-6736(82)92322-4. [DOI] [PubMed] [Google Scholar]
  12. Coiro V., Passeri M., Davoli C., Bacchi-Modena A., Bianconi L., Volpi R., Chiodera P. Oxytocin reduces exercise-induced ACTH and cortisol rise in man. Acta Endocrinol (Copenh) 1988 Nov;119(3):405–412. doi: 10.1530/acta.0.1190405. [DOI] [PubMed] [Google Scholar]
  13. Conaglen J. V., Donald R. A., Espiner E. A., Livesey J. H., Nicholls M. G. The effect of ovine corticotropin-releasing factor on catecholamine, vasopressin, and aldosterone secretion in normal man. J Clin Endocrinol Metab. 1984 Mar;58(3):463–466. doi: 10.1210/jcem-58-3-463. [DOI] [PubMed] [Google Scholar]
  14. Crock P. A., Pestell R. G., Calenti A. J., Gilford E. J., Henderson J. K., Best J. D., Alford F. P. Multiple pituitary hormone gradients from inferior petrosal sinus sampling in Cushing's disease. Acta Endocrinol (Copenh) 1988 Sep;119(1):75–80. doi: 10.1530/acta.0.1190075. [DOI] [PubMed] [Google Scholar]
  15. De Souza E. B., Perrin M. H., Insel T. R., Rivier J., Vale W. W., Kuhar M. J. Corticotropin-releasing factor receptors in rat forebrain: autoradiographic identification. Science. 1984 Jun 29;224(4656):1449–1451. doi: 10.1126/science.6328656. [DOI] [PubMed] [Google Scholar]
  16. De Souza E. B., Perrin M. H., Rivier J., Vale W. W., Kuhar M. J. Corticotropin-releasing factor receptors in rat pituitary gland: autoradiographic localization. Brain Res. 1984 Mar 26;296(1):202–207. doi: 10.1016/0006-8993(84)90534-1. [DOI] [PubMed] [Google Scholar]
  17. De Souza E. B., Perrin M. H., Whitehouse P. J., Rivier J., Vale W., Kuhar M. J. Corticotropin-releasing factor receptors in human pituitary gland: autoradiographic localization. Neuroendocrinology. 1985 May;40(5):419–422. doi: 10.1159/000124107. [DOI] [PubMed] [Google Scholar]
  18. Gillies G. E., Linton E. A., Lowry P. J. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 1982 Sep 23;299(5881):355–357. doi: 10.1038/299355a0. [DOI] [PubMed] [Google Scholar]
  19. Grigoriadis D. E., De Souza E. B. Corticotropin-releasing factor (CRF) receptors in intermediate lobe of the pituitary: biochemical characterization and autoradiographic localization. Peptides. 1989 Jan-Feb;10(1):179–188. doi: 10.1016/0196-9781(89)90095-8. [DOI] [PubMed] [Google Scholar]
  20. Holmes M. C., Antoni F. A., Aguilera G., Catt K. J. Magnocellular axons in passage through the median eminence release vasopressin. Nature. 1986 Jan 23;319(6051):326–329. doi: 10.1038/319326a0. [DOI] [PubMed] [Google Scholar]
  21. Kalogeras K. T., Calogero A. E., Kuribayiashi T., Khan I., Gallucci W. T., Kling M. A., Chrousos G. P., Gold P. W. In vitro and in vivo effects of the triazolobenzodiazepine alprazolam on hypothalamic-pituitary-adrenal function: pharmacological and clinical implications. J Clin Endocrinol Metab. 1990 May;70(5):1462–1471. doi: 10.1210/jcem-70-5-1462. [DOI] [PubMed] [Google Scholar]
  22. Klingbeil C. K., Keil L. C., Chang D., Reid I. A. Effects of CRF and ANG II on ACTH and vasopressin release in conscious dogs. Am J Physiol. 1988 Jul;255(1 Pt 1):E46–E53. doi: 10.1152/ajpendo.1988.255.1.E46. [DOI] [PubMed] [Google Scholar]
  23. Landolt A. M., Valavanis A., Girard J., Eberle A. N. Corticotrophin-releasing factor-test used with bilateral, simultaneous inferior petrosal sinus blood-sampling for the diagnosis of pituitary-dependent Cushing's disease. Clin Endocrinol (Oxf) 1986 Dec;25(6):687–696. doi: 10.1111/j.1365-2265.1986.tb03624.x. [DOI] [PubMed] [Google Scholar]
  24. Legros J. J., Chiodera P., Demey-Ponsart E. Inhibitory influence of exogenous oxytocin on adrenocorticotropin secretion in normal human subjects. J Clin Endocrinol Metab. 1982 Dec;55(6):1035–1039. doi: 10.1210/jcem-55-6-1035. [DOI] [PubMed] [Google Scholar]
  25. Legros J. J., Chiodera P., Geenen V., Smitz S., von Frenckell R. Dose-response relationship between plasma oxytocin and cortisol and adrenocorticotropin concentrations during oxytocin infusion in normal men. J Clin Endocrinol Metab. 1984 Jan;58(1):105–109. doi: 10.1210/jcem-58-1-105. [DOI] [PubMed] [Google Scholar]
  26. Lewis D. A., Sherman B. M. Oxytocin does not influence adrenocorticotropin secretion in man. J Clin Endocrinol Metab. 1985 Jan;60(1):53–56. doi: 10.1210/jcem-60-1-53. [DOI] [PubMed] [Google Scholar]
  27. Liu J. H., Muse K., Contreras P., Gibbs D., Vale W., Rivier J., Yen S. S. Augmentation of ACTH-releasing activity of synthetic corticotropin releasing factor (CRF) by vasopressin in women. J Clin Endocrinol Metab. 1983 Nov;57(5):1087–1089. doi: 10.1210/jcem-57-5-1087. [DOI] [PubMed] [Google Scholar]
  28. Makara G. B. Denervation of the rat posterior pituitary gland: validation of a stereotaxic method. J Neuroendocrinol. 1993 Aug;5(4):335–340. doi: 10.1111/j.1365-2826.1993.tb00492.x. [DOI] [PubMed] [Google Scholar]
  29. Manni A., Latshaw R. F., Page R., Santen R. J. Simultaneous bilateral venous sampling for adrenocorticotropin in pituitary-dependent cushing's disease: evidence for lateralization of pituitary venous drainage. J Clin Endocrinol Metab. 1983 Nov;57(5):1070–1073. doi: 10.1210/jcem-57-5-1070. [DOI] [PubMed] [Google Scholar]
  30. Millan M. A., Samra A. B., Wynn P. C., Catt K. J., Aguilera G. Receptors and actions of corticotropin-releasing hormone in the primate pituitary gland. J Clin Endocrinol Metab. 1987 May;64(5):1036–1041. doi: 10.1210/jcem-64-5-1036. [DOI] [PubMed] [Google Scholar]
  31. Miller D. L., Doppman J. L. Petrosal sinus sampling: technique and rationale. Radiology. 1991 Jan;178(1):37–47. doi: 10.1148/radiology.178.1.1845785. [DOI] [PubMed] [Google Scholar]
  32. Milsom S. R., Conaglen J. V., Donald R. A., Espiner E. A., Nicholls M. G., Livesey J. H. Augmentation of the response to CRF in man: relative contributions of endogenous angiotensin and vasopressin. Clin Endocrinol (Oxf) 1985 May;22(5):623–629. doi: 10.1111/j.1365-2265.1985.tb02998.x. [DOI] [PubMed] [Google Scholar]
  33. Moses A. M., Miller M., Streeten D. H. Pathophysiologic and pharmacologic alterations in the release and action of ADH. Metabolism. 1976 Jun;25(6):697–721. doi: 10.1016/0026-0495(76)90067-6. [DOI] [PubMed] [Google Scholar]
  34. Nussey S. S., Page S. R., Ang V. T., Jenkins J. S., White A. The effect of oxytocin infusion on adenohypophysial and adrenal cortical responses to insulin-induced hypoglycaemia. Clin Endocrinol (Oxf) 1988 Sep;29(3):257–264. doi: 10.1111/j.1365-2265.1988.tb01223.x. [DOI] [PubMed] [Google Scholar]
  35. Nussey S. S., Page S. R., Peterson D. B., Byrne J., Crosby S. R., White A., Ang V. T., Jackson R., Jenkins J. S. Corticotrophin releasing hormone (CRH1-41) stimulates the secretion of adrenocorticotrophin, vasopressin and oxytocin but not adrenocorticotrophin precursors: evidence from petrosal sinus sampling in man. Clin Endocrinol (Oxf) 1991 Jan;34(1):51–56. doi: 10.1111/j.1365-2265.1991.tb01735.x. [DOI] [PubMed] [Google Scholar]
  36. Oelkers W. Hyponatremia and inappropriate secretion of vasopressin (antidiuretic hormone) in patients with hypopituitarism. N Engl J Med. 1989 Aug 24;321(8):492–496. doi: 10.1056/NEJM198908243210802. [DOI] [PubMed] [Google Scholar]
  37. Oldfield E. H., Chrousos G. P., Schulte H. M., Schaaf M., McKeever P. E., Krudy A. G., Cutler G. B., Jr, Loriaux D. L., Doppman J. L. Preoperative lateralization of ACTH-secreting pituitary microadenomas by bilateral and simultaneous inferior petrosal venous sinus sampling. N Engl J Med. 1985 Jan 10;312(2):100–103. doi: 10.1056/NEJM198501103120207. [DOI] [PubMed] [Google Scholar]
  38. Page R. B. Directional pituitary blood flow: a microcinephotographic study. Endocrinology. 1983 Jan;112(1):157–165. doi: 10.1210/endo-112-1-157. [DOI] [PubMed] [Google Scholar]
  39. Page S. R., Ang V. T., Jackson R., White A., Nussey S. S., Jenkins J. S. The effect of oxytocin infusion on adenohypophyseal function in man. Clin Endocrinol (Oxf) 1990 Mar;32(3):307–313. doi: 10.1111/j.1365-2265.1990.tb00871.x. [DOI] [PubMed] [Google Scholar]
  40. Pretel S., Piekut D. T. Coexistence of CRF peptide and oxytocin mRNA in the paraventricular nucleus. Peptides. 1990 May-Jun;11(3):621–624. doi: 10.1016/0196-9781(90)90068-g. [DOI] [PubMed] [Google Scholar]
  41. Raff H., Skelton M. M., Merrill D. C., Cowley A. W., Jr Vasopressin responses to corticotropin releasing factor and hyperosmolality in conscious dogs. Am J Physiol. 1986 Dec;251(6 Pt 2):R1235–R1239. doi: 10.1152/ajpregu.1986.251.6.R1235. [DOI] [PubMed] [Google Scholar]
  42. Rittmaster R. S., Cutler G. B., Jr, Sobel D. O., Goldstein D. S., Koppelman M. C., Loriaux D. L., Chrousos G. P. Morphine inhibits the pituitary-adrenal response to ovine corticotropin-releasing hormone in normal subjects. J Clin Endocrinol Metab. 1985 May;60(5):891–895. doi: 10.1210/jcem-60-5-891. [DOI] [PubMed] [Google Scholar]
  43. Schürmeyer T. H., Gold P. W., Gallucci W. T., Tomai T. P., Cutler G. B., Jr, Loriaux D. L., Chrousos G. P. Effects and pharmacokinetic properties of the rat/human corticotropin-releasing factor in rhesus monkeys. Endocrinology. 1985 Jul;117(1):300–306. doi: 10.1210/endo-117-1-300. [DOI] [PubMed] [Google Scholar]
  44. Tsagarakis S., Navarra P., Rees L. H., Besser M., Grossman A., Navara P. Morphine directly modulates the release of stimulated corticotrophin-releasing factor-41 from rat hypothalamus in vitro. Endocrinology. 1989 May;124(5):2330–2335. doi: 10.1210/endo-124-5-2330. [DOI] [PubMed] [Google Scholar]
  45. Vale W., Spiess J., Rivier C., Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981 Sep 18;213(4514):1394–1397. doi: 10.1126/science.6267699. [DOI] [PubMed] [Google Scholar]
  46. Vale W., Vaughan J., Smith M., Yamamoto G., Rivier J., Rivier C. Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology. 1983 Sep;113(3):1121–1131. doi: 10.1210/endo-113-3-1121. [DOI] [PubMed] [Google Scholar]
  47. Whitnall M. H., Smyth D., Gainer H. Vasopressin coexists in half of the corticotropin-releasing factor axons present in the external zone of the median eminence in normal rats. Neuroendocrinology. 1987 May;45(5):420–424. doi: 10.1159/000124768. [DOI] [PubMed] [Google Scholar]
  48. Wittling W., Pflüger M. Neuroendocrine hemisphere asymmetries: salivary cortisol secretion during lateralized viewing of emotion-related and neutral films. Brain Cogn. 1990 Nov;14(2):243–265. doi: 10.1016/0278-2626(90)90032-j. [DOI] [PubMed] [Google Scholar]
  49. Wittling W., Schweiger E. Neuroendocrine brain asymmetry and physical complaints. Neuropsychologia. 1993 Jun;31(6):591–608. doi: 10.1016/0028-3932(93)90054-4. [DOI] [PubMed] [Google Scholar]
  50. Yanovski J. A., Cutler G. B., Jr, Doppman J. L., Miller D. L., Chrousos G. P., Oldfield E. H., Nieman L. K. The limited ability of inferior petrosal sinus sampling with corticotropin-releasing hormone to distinguish Cushing's disease from pseudo-Cushing states or normal physiology. J Clin Endocrinol Metab. 1993 Aug;77(2):503–509. doi: 10.1210/jcem.77.2.8393887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zovickian J., Oldfield E. H., Doppman J. L., Cutler G. B., Jr, Loriaux D. L. Usefulness of inferior petrosal sinus venous endocrine markers in Cushing's disease. J Neurosurg. 1988 Feb;68(2):205–210. doi: 10.3171/jns.1988.68.2.0205. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES