Abstract
Post-heparin hepatic lipase activity is reduced in chronic renal failure (CRF). This could be due to reduced synthesis, decreased activity, and/or impaired secretion of the enzyme. Further, the factor(s) responsible for such derangements are not elucidated. We examined hepatic lipase metabolism in normal, 6-wk-old CRF rats, CRF-PTX (parathyroidectomized) rats, and CRF and normal rats treated with verapamil (CRF-V, normal-V) using liver homogenate, hepatic cell culture for 8 h, and in vitro liver perfusion. The Vmax of hepatic lipase in liver homogenate was significantly (P < 0.01) reduced and the Km was significantly (P < 0.01) increased in CRF rats, but the values were normal in CRF-PTX, CRF-V, and normal-V rats. Culture of hepatic cells for 8 h was associated with an increase in hepatic lipase activity but the increment in CRF rats was significantly (P < 0.01) lower than that of normal, CRF-PTX, CRF-V, and normal-V rats. Both parathyroid hormone (PTH)-(1-84) and 1-34 inhibited the production of hepatic lipase in cultured cells from normal, CRF-PTX, CRF-V, and normal-V rats. The expression of the mRNA of the hepatic lipase was significantly reduced in CRF animals with the ratio between it and that of house keeping gene G3DPH being 15 +/-3% compared to 40 +/- 1.3% in normal, 44+/-2.9% CRF-PTX, 44 +/- 5.4% in CRF-V, and 39 +/- 3.9% in normal-V rats. Infusion of heparin to the in vitro hepatic perfusion system increased the activity of hepatic lipase in the effluent in all groups of rat except in CRF animals. Infusion of PTH-(1-34) in dose of 10(-6) M into the liver perfusion system inhibited the increase in post-heparin hepatic lipase activity. The data show that in CRF (a) the mRNA of hepatic lipase is downregulated, and hepatic lipase production, activity and release are impaired, (b) that this is due to the state of secondary hyperparathyroidism of CRF since both acute and chronic excess of PTH were associated with these abnormalities, (c) and that prevention of excess PTH by PTX of CRF rats or blocking the effect of PTH by treatment with verapamil corrected the derangement in hepatic lipase metabolism.
Full Text
The Full Text of this article is available as a PDF (280.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akmal M., Kasim S. E., Soliman A. R., Massry S. G. Excess parathyroid hormone adversely affects lipid metabolism in chronic renal failure. Kidney Int. 1990 Mar;37(3):854–858. doi: 10.1038/ki.1990.58. [DOI] [PubMed] [Google Scholar]
- Akmal M., Perkins S., Kasim S. E., Oh H. Y., Smogorzewski M., Massry S. G. Verapamil prevents chronic renal failure-induced abnormalities in lipid metabolism. Am J Kidney Dis. 1993 Jul;22(1):158–163. doi: 10.1016/s0272-6386(12)70182-8. [DOI] [PubMed] [Google Scholar]
- Attman P. O., Samuelsson O., Alaupovic P. Lipoprotein metabolism and renal failure. Am J Kidney Dis. 1993 Jun;21(6):573–592. doi: 10.1016/s0272-6386(12)80030-8. [DOI] [PubMed] [Google Scholar]
- Bagdade J., Casaretto A., Albers J. Effects of chronic uremia, hemodialysis, and renal transplantation on plasma lipids and lipoproteins in man. J Lab Clin Med. 1976 Jan;87(1):38–48. [PubMed] [Google Scholar]
- Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993 Sep;15(3):532-4, 536-7. [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Ehnholm C., Kuusi T. Preparation, characterization, and measurement of hepatic lipase. Methods Enzymol. 1986;129:716–738. doi: 10.1016/0076-6879(86)29101-6. [DOI] [PubMed] [Google Scholar]
- Jansen H., Kalkman C., Zonneveld A. J., Hülsmann W. C. Secretion of triacylglycerol hydrolase activity by isolated parenchymal rat liver cells. FEBS Lett. 1979 Feb 15;98(2):299–302. doi: 10.1016/0014-5793(79)80204-5. [DOI] [PubMed] [Google Scholar]
- Kass G. E., Llopis J., Chow S. C., Duddy S. K., Orrenius S. Receptor-operated calcium influx in rat hepatocytes. Identification and characterization using manganese. J Biol Chem. 1990 Oct 15;265(29):17486–17492. [PubMed] [Google Scholar]
- Klin M., Smogorzewski M., Khilnani H., Michnowska M., Massry S. G. Mechanisms of PTH-induced rise in cytosolic calcium in adult rat hepatocytes. Am J Physiol. 1994 Nov;267(5 Pt 1):G754–G763. doi: 10.1152/ajpgi.1994.267.5.G754. [DOI] [PubMed] [Google Scholar]
- Klin M., Smogorzewski M., Massry S. G. Chronic renal failure increases cytosolic Ca2+ of hepatocytes. Am J Physiol. 1995 Jul;269(1 Pt 1):G103–G109. doi: 10.1152/ajpgi.1995.269.1.G103. [DOI] [PubMed] [Google Scholar]
- Komaromy M. C., Schotz M. C. Cloning of rat hepatic lipase cDNA: evidence for a lipase gene family. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1526–1530. doi: 10.1073/pnas.84.6.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laposata E. A., Laboda H. M., Glick J. M., Strauss J. F., 3rd Hepatic lipase. Synthesis, processing, and secretion by isolated rat hepatocytes. J Biol Chem. 1987 Apr 15;262(11):5333–5338. [PubMed] [Google Scholar]
- Leitersdorf E., Stein O., Stein Y. Synthesis and secretion of triacylglycerol lipase by cultured rat hepatocytes. Biochim Biophys Acta. 1984 Jul 6;794(2):261–268. doi: 10.1016/0005-2760(84)90154-1. [DOI] [PubMed] [Google Scholar]
- Llopis J., Kass G. E., Gahm A., Orrenius S. Evidence for two pathways of receptor-mediated Ca2+ entry in hepatocytes. Biochem J. 1992 May 15;284(Pt 1):243–247. doi: 10.1042/bj2840243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massry S. G., Klin M., Ni Z., Tian J., Kedes L., Smogorzewski M. Impaired agonist-induced calcium signaling in hepatocytes from chronic renal failure rats. Kidney Int. 1995 Oct;48(4):1324–1331. doi: 10.1038/ki.1995.417. [DOI] [PubMed] [Google Scholar]
- Massry S. G., Smogorzewski M. Mechanisms through which parathyroid hormone mediates its deleterious effects on organ function in uremia. Semin Nephrol. 1994 May;14(3):219–231. [PubMed] [Google Scholar]
- Morand C., Yacoub C., Remesy C., Demigne C. Characterization of glucagon and catecholamine effects on isolated sheep hepatocytes. Am J Physiol. 1988 Oct;255(4 Pt 2):R539–R546. doi: 10.1152/ajpregu.1988.255.4.R539. [DOI] [PubMed] [Google Scholar]
- Mordasini R., Frey F., Flury W., Klose G., Greten H. Selective deficiency of hepatic triglyceride lipase in uremic patients. N Engl J Med. 1977 Dec 22;297(25):1362–1366. doi: 10.1056/NEJM197712222972502. [DOI] [PubMed] [Google Scholar]
- Nilsson-Ehle P., Garfinkel A. S., Schotz M. C. Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem. 1980;49:667–693. doi: 10.1146/annurev.bi.49.070180.003315. [DOI] [PubMed] [Google Scholar]
- Norbeck H. E., Orö L., Carlson L. A. Serum lipid and lipoprotein concentrations in chronic uremia. Acta Med Scand. 1976;200(6):487–492. doi: 10.1111/j.0954-6820.1976.tb08270.x. [DOI] [PubMed] [Google Scholar]
- Peinado-Onsurbe J., Soler C., Galan X., Poveda B., Soley M., Llobera M., Ramírez I. Involvement of catecholamines in the effect of fasting on hepatic endothelial lipase activity in the rat. Endocrinology. 1991 Nov;129(5):2599–2606. doi: 10.1210/endo-129-5-2599. [DOI] [PubMed] [Google Scholar]
- Schoonderwoerd K., Hülsmann W. C., Jansen H. Regulation of liver lipase. II. Involvement of the alpha 1-receptor. Biochim Biophys Acta. 1984 Oct 4;795(3):481–486. doi: 10.1016/0005-2760(84)90176-0. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
- Smogorzewski M., Tian J., Massry S. G. Down-regulation of PTH-PTHrP receptor of heart in CRF: role of [Ca2+]i. Kidney Int. 1995 Apr;47(4):1182–1186. doi: 10.1038/ki.1995.168. [DOI] [PubMed] [Google Scholar]
- Soler C., Galan X., Peinado-Onsurbe J., Quintana I., Llobera M., Soley M., Ramírez I. Epidermal growth factor interferes with the effect of adrenaline on glucose production and on hepatic lipase secretion in rat hepatocytes. Regul Pept. 1993 Mar 5;44(1):11–16. doi: 10.1016/0167-0115(93)90125-r. [DOI] [PubMed] [Google Scholar]
- Studer R. K., Snowdowne K. W., Borle A. B. Regulation of hepatic glycogenolysis by glucagon in male and female rats. Role of cAMP and Ca2+ and interactions between epinephrine and glucagon. J Biol Chem. 1984 Mar 25;259(6):3596–3604. [PubMed] [Google Scholar]
- Tian J., Smogorzewski M., Kedes L., Massry S. G. PTH-PTHrP receptor mRNA is downregulated in chronic renal failure. Am J Nephrol. 1994;14(1):41–46. doi: 10.1159/000168684. [DOI] [PubMed] [Google Scholar]
- Ureña P., Kubrusly M., Mannstadt M., Hruby M., Trinh M. M., Silve C., Lacour B., Abou-Samra A. B., Segre G. V., Drüeke T. The renal PTH/PTHrP receptor is down-regulated in rats with chronic renal failure. Kidney Int. 1994 Feb;45(2):605–611. doi: 10.1038/ki.1994.79. [DOI] [PubMed] [Google Scholar]
- Yamauchi A., Imai E., Noguchi T., Tanaka T., Yamamoto S., Mikami H., Fukuhara Y., Fujii M., Orita Y., Kamada T. Effect of chronic renal failure on the level of albumin messenger RNA. Metabolism. 1989 May;38(5):421–424. doi: 10.1016/0026-0495(89)90191-1. [DOI] [PubMed] [Google Scholar]
- Yang J., Tashjian A. H., Jr Regulation of endogenous thyrotropin-releasing hormone (TRH) receptor messenger RNA by TRH in GH4C1 cells. Mol Endocrinol. 1993 Jun;7(6):753–758. doi: 10.1210/mend.7.6.8395652. [DOI] [PubMed] [Google Scholar]