Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 15;97(10):2192–2203. doi: 10.1172/JCI118660

Neutral endopeptidase 24.11 in neutrophils modulates protective effects of natriuretic peptides against neutrophils-induced endothelial cytotoxity.

T Matsumura 1, K Kugiyama 1, S Sugiyama 1, M Ohgushi 1, K Amanaka 1, M Suzuki 1, H Yasue 1
PMCID: PMC507298  PMID: 8636398

Abstract

This study was performed to determine effects of atrial and brain natriuretic peptides (ANP, BNP) on neutrophils-induced endothelial injury which is known to play a role in the pathophysiology of ischemia/reperfusion myocardial injury and to examine whether the effects of ANP and BNP on neutrophils are modulated by neutral endopeptidase 24.11 (NEP) in neutrophils themselves. The incubation of human neutrophils with ANP and BNP inhibited the neutrophils-induced detachment of cultured human endothelial cells (HEC). The inhibitory effect of ANP and BNP was associated with the suppressions of the neutrophils adhesiveness to HEC, CD18 expression on the neutrophils and elastase release from the neutrophils. Coincubation with UK73967 or phosphoramidon, inhibitors of NEP, potentiated all of the effects of ANP and BNP on the neutrophil functions, and the NEP inhibitors protected degradation of ANP and BNP by the neutrophils. NEP enzymatic activity in the particulate fractions and immunoreactive NEP expression were found to increase in the neutrophils from patients with early phase of acute myocardial infarction (AMI) by 5.2- and by 4.2-fold of the neutrophils from patients with late phase of AMI, respectively. In an in vivo canine model of myocardial ischemia/reperfusion, the intravenous administration of UK73967 suppressed the neutrophil adherence to endothelium and the neutrophil accumulation in the ischemic/reperfused myocardium. The results indicate that ANP and BNP, which are known to increase in AMI, modulate the neutrophil functions and exert protective effects against the neutrophils-induced endothelial cytotoxity. But the effects are suppressed due to their degradation by the neutrophil own NEP. Thus, neutrophil NEP, which also increases in AMI, may play a role in the pathophysiology of neutrophils-mediated ischemia/reperfusion endothelial and myocardial injury.

Full Text

The Full Text of this article is available as a PDF (553.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel R. G., Dubyak G. R., Dunn M. J. Effect of atrial natriuretic factor on cytosolic free calcium in rat glomerular mesangial cells. FEBS Lett. 1987 Nov 30;224(2):396–400. doi: 10.1016/0014-5793(87)80491-x. [DOI] [PubMed] [Google Scholar]
  2. Ballermann B. J., Brenner B. M. George E. Brown memorial lecture. Role of atrial peptides in body fluid homeostasis. Circ Res. 1986 May;58(5):619–630. doi: 10.1161/01.res.58.5.619. [DOI] [PubMed] [Google Scholar]
  3. Bradley P. P., Priebat D. A., Christensen R. D., Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982 Mar;78(3):206–209. doi: 10.1111/1523-1747.ep12506462. [DOI] [PubMed] [Google Scholar]
  4. Buerke M., Weyrich A. S., Zheng Z., Gaeta F. C., Forrest M. J., Lefer A. M. Sialyl Lewisx-containing oligosaccharide attenuates myocardial reperfusion injury in cats. J Clin Invest. 1994 Mar;93(3):1140–1148. doi: 10.1172/JCI117066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connelly J. C., Skidgel R. A., Schulz W. W., Johnson A. R., Erdös E. G. Neutral endopeptidase 24.11 in human neutrophils: cleavage of chemotactic peptide. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8737–8741. doi: 10.1073/pnas.82.24.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Danilewicz J. C., Barclay P. L., Barnish I. T., Brown D., Campbell S. F., James K., Samuels G. M., Terrett N. K., Wythes M. J. UK-69,578, a novel inhibitor of EC 3.4.24.11 which increases endogenous ANF levels and is natriuretic and diuretic. Biochem Biophys Res Commun. 1989 Oct 16;164(1):58–65. doi: 10.1016/0006-291x(89)91682-3. [DOI] [PubMed] [Google Scholar]
  7. De Servi S., Mazzone A., Ricevuti G., Fioravanti A., Bramucci E., Angoli L., Stefano G., Specchia G. Granulocyte activation after coronary angioplasty in humans. Circulation. 1990 Jul;82(1):140–146. doi: 10.1161/01.cir.82.1.140. [DOI] [PubMed] [Google Scholar]
  8. Dewald B., Thelen M., Baggiolini M. Two transduction sequences are necessary for neutrophil activation by receptor agonists. J Biol Chem. 1988 Nov 5;263(31):16179–16184. [PubMed] [Google Scholar]
  9. Dreyer W. J., Michael L. H., Nguyen T., Smith C. W., Anderson D. C., Entman M. L., Rossen R. D. Kinetics of C5a release in cardiac lymph of dogs experiencing coronary artery ischemia-reperfusion injury. Circ Res. 1992 Dec;71(6):1518–1524. doi: 10.1161/01.res.71.6.1518. [DOI] [PubMed] [Google Scholar]
  10. Engler R. L., Dahlgren M. D., Peterson M. A., Dobbs A., Schmid-Schönbein G. W. Accumulation of polymorphonuclear leukocytes during 3-h experimental myocardial ischemia. Am J Physiol. 1986 Jul;251(1 Pt 2):H93–100. doi: 10.1152/ajpheart.1986.251.1.H93. [DOI] [PubMed] [Google Scholar]
  11. Erdös E. G., Skidgel R. A. Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J. 1989 Feb;3(2):145–151. [PubMed] [Google Scholar]
  12. Floras J. S. Sympathoinhibitory effects of atrial natriuretic factor in normal humans. Circulation. 1990 Jun;81(6):1860–1873. doi: 10.1161/01.cir.81.6.1860. [DOI] [PubMed] [Google Scholar]
  13. Gros C., Souque A., Schwartz J. C., Duchier J., Cournot A., Baumer P., Lecomte J. M. Protection of atrial natriuretic factor against degradation: diuretic and natriuretic responses after in vivo inhibition of enkephalinase (EC 3.4.24.11) by acetorphan. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7580–7584. doi: 10.1073/pnas.86.19.7580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  15. Harlan J. M., Killen P. D., Harker L. A., Striker G. E., Wright D. G. Neutrophil-mediated endothelial injury in vitro mechanisms of cell detachment. J Clin Invest. 1981 Dec;68(6):1394–1403. doi: 10.1172/JCI110390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hudgin R. L., Charleson S. E., Zimmerman M., Mumford R., Wood P. L. Enkephalinase: selective peptide inhibitors. Life Sci. 1981 Dec 21;29(25):2593–2601. doi: 10.1016/0024-3205(81)90632-9. [DOI] [PubMed] [Google Scholar]
  17. Hughes H., Mathews B., Lenz M. L., Guyton J. R. Cytotoxicity of oxidized LDL to porcine aortic smooth muscle cells is associated with the oxysterols 7-ketocholesterol and 7-hydroxycholesterol. Arterioscler Thromb. 1994 Jul;14(7):1177–1185. doi: 10.1161/01.atv.14.7.1177. [DOI] [PubMed] [Google Scholar]
  18. Inauen W., Granger D. N., Meininger C. J., Schelling M. E., Granger H. J., Kvietys P. R. Anoxia-reoxygenation-induced, neutrophil-mediated endothelial cell injury: role of elastase. Am J Physiol. 1990 Sep;259(3 Pt 2):H925–H931. doi: 10.1152/ajpheart.1990.259.3.H925. [DOI] [PubMed] [Google Scholar]
  19. Iwamoto I., Kimura A., Ochiai K., Tomioka H., Yoshida S. Distribution of neutral endopeptidase activity in human blood leukocytes. J Leukoc Biol. 1991 Feb;49(2):116–125. doi: 10.1002/jlb.49.2.116. [DOI] [PubMed] [Google Scholar]
  20. Jaconi M. E., Rivest R. W., Schlegel W., Wollheim C. B., Pittet D., Lew P. D. Spontaneous and chemoattractant-induced oscillations of cytosolic free calcium in single adherent human neutrophils. J Biol Chem. 1988 Aug 5;263(22):10557–10560. [PubMed] [Google Scholar]
  21. Johnson A. R., Ashton J., Schulz W. W., Erdös E. G. Neutral metalloendopeptidase in human lung tissue and cultured cells. Am Rev Respir Dis. 1985 Sep;132(3):564–568. doi: 10.1164/arrd.1985.132.3.564. [DOI] [PubMed] [Google Scholar]
  22. Kawabata K., Suzuki M., Sugitani M., Imaki K., Toda M., Miyamoto T. ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem Biophys Res Commun. 1991 Jun 14;177(2):814–820. doi: 10.1016/0006-291x(91)91862-7. [DOI] [PubMed] [Google Scholar]
  23. Ku D. D. Coronary vascular reactivity after acute myocardial ischemia. Science. 1982 Nov 5;218(4572):576–578. doi: 10.1126/science.7123259. [DOI] [PubMed] [Google Scholar]
  24. Kugiyama K., Sakamoto T., Misumi I., Sugiyama S., Ohgushi M., Ogawa H., Horiguchi M., Yasue H. Transferable lipids in oxidized low-density lipoprotein stimulate plasminogen activator inhibitor-1 and inhibit tissue-type plasminogen activator release from endothelial cells. Circ Res. 1993 Aug;73(2):335–343. doi: 10.1161/01.res.73.2.335. [DOI] [PubMed] [Google Scholar]
  25. Laragh J. H. Atrial natriuretic hormone, the renin-aldosterone axis, and blood pressure-electrolyte homeostasis. N Engl J Med. 1985 Nov 21;313(21):1330–1340. doi: 10.1056/NEJM198511213132106. [DOI] [PubMed] [Google Scholar]
  26. Laudanna C., Constantin G., Baron P., Scarpini E., Scarlato G., Cabrini G., Dechecchi C., Rossi F., Cassatella M. A., Berton G. Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-alpha and interleukin-8 mRNA in human neutrophils. Evidence for a role of L-selectin as a signaling molecule. J Biol Chem. 1994 Feb 11;269(6):4021–4026. [PubMed] [Google Scholar]
  27. Lefer A. M., Tsao P. S., Lefer D. J., Ma X. L. Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischemia. FASEB J. 1991 Apr;5(7):2029–2034. doi: 10.1096/fasebj.5.7.2010056. [DOI] [PubMed] [Google Scholar]
  28. Letarte M., Vera S., Tran R., Addis J. B., Onizuka R. J., Quackenbush E. J., Jongeneel C. V., McInnes R. R. Common acute lymphocytic leukemia antigen is identical to neutral endopeptidase. J Exp Med. 1988 Oct 1;168(4):1247–1253. doi: 10.1084/jem.168.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lum H., Gibbs L., Lai L., Malik A. B. CD18 integrin-dependent endothelial injury: effects of opsonized zymosan and phorbol ester activation. J Leukoc Biol. 1994 Jan;55(1):58–63. doi: 10.1002/jlb.55.1.58. [DOI] [PubMed] [Google Scholar]
  30. López Farré A., Riesco A., Espinosa G., Digiuni E., Cernadas M. R., Alvarez V., Montón M., Rivas F., Gallego M. J., Egido J. Effect of endothelin-1 on neutrophil adhesion to endothelial cells and perfused heart. Circulation. 1993 Sep;88(3):1166–1171. doi: 10.1161/01.cir.88.3.1166. [DOI] [PubMed] [Google Scholar]
  31. Ma X. L., Lefer D. J., Lefer A. M., Rothlein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation. 1992 Sep;86(3):937–946. doi: 10.1161/01.cir.86.3.937. [DOI] [PubMed] [Google Scholar]
  32. Malfroy B., Swerts J. P., Guyon A., Roques B. P., Schwartz J. C. High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature. 1978 Nov 30;276(5687):523–526. doi: 10.1038/276523a0. [DOI] [PubMed] [Google Scholar]
  33. Mehta J., Dinerman J., Mehta P., Saldeen T. G., Lawson D., Donnelly W. H., Wallin R. Neutrophil function in ischemic heart disease. Circulation. 1989 Mar;79(3):549–556. doi: 10.1161/01.cir.79.3.549. [DOI] [PubMed] [Google Scholar]
  34. Moilanen E., Vuorinen P., Kankaanranta H., Metsä-Ketelä T., Vapaatalo H. Inhibition by nitric oxide-donors of human polymorphonuclear leucocyte functions. Br J Pharmacol. 1993 Jul;109(3):852–858. doi: 10.1111/j.1476-5381.1993.tb13653.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Moldow C. F., Jacob H. S. Endothelial culture, neutrophil or enzymic generation of free radicals: in vitro methods for the study of endothelial injury. Methods Enzymol. 1984;105:378–385. doi: 10.1016/s0076-6879(84)05051-5. [DOI] [PubMed] [Google Scholar]
  36. Morishita Y., Sano T., Ando K., Saitoh Y., Kase H., Yamada K., Matsuda Y. Microbial polysaccharide, HS-142-1, competitively and selectively inhibits ANP binding to its guanylyl cyclase-containing receptor. Biochem Biophys Res Commun. 1991 May 15;176(3):949–957. doi: 10.1016/0006-291x(91)90374-g. [DOI] [PubMed] [Google Scholar]
  37. Morita E., Yasue H., Yoshimura M., Ogawa H., Jougasaki M., Matsumura T., Mukoyama M., Nakao K. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation. 1993 Jul;88(1):82–91. doi: 10.1161/01.cir.88.1.82. [DOI] [PubMed] [Google Scholar]
  38. Münzel T., Kurz S., Holtz J., Busse R., Steinhauer H., Just H., Drexler H. Neurohormonal inhibition and hemodynamic unloading during prolonged inhibition of ANF degradation in patients with severe chronic heart failure. Circulation. 1992 Oct;86(4):1089–1098. doi: 10.1161/01.cir.86.4.1089. [DOI] [PubMed] [Google Scholar]
  39. Needleman P., Greenwald J. E. Atriopeptin: a cardiac hormone intimately involved in fluid, electrolyte, and blood-pressure homeostasis. N Engl J Med. 1986 Mar 27;314(13):828–834. doi: 10.1056/NEJM198603273141306. [DOI] [PubMed] [Google Scholar]
  40. Niu X. F., Smith C. W., Kubes P. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res. 1994 Jun;74(6):1133–1140. doi: 10.1161/01.res.74.6.1133. [DOI] [PubMed] [Google Scholar]
  41. Okumura K., Yasue H., Fujii H., Kugiyama K., Matsuyama K., Yoshimura M., Jougasaki M., Kikuta K., Kato H., Tanaka H. Effects of brain (B-type) natriuretic peptide on coronary artery diameter and coronary hemodynamic variables in humans: comparison with effects on systemic hemodynamic variables. J Am Coll Cardiol. 1995 Feb;25(2):342–348. doi: 10.1016/0735-1097(94)00407-h. [DOI] [PubMed] [Google Scholar]
  42. Omland T., Aarsland T., Aakvaag A., Lie R. T., Dickstein K. Prognostic value of plasma atrial natriuretic factor, norepinephrine and epinephrine in acute myocardial infarction. Am J Cardiol. 1993 Aug 1;72(3):255–259. doi: 10.1016/0002-9149(93)90669-4. [DOI] [PubMed] [Google Scholar]
  43. Park K. H., Levi R. Hypoxic coronary vasodilatation and cGMP overproduction are blocked by a nitric oxide synthase inhibitor, but not by a guanylyl cyclase ANF receptor antagonist. Eur J Pharmacol. 1994 Apr 11;256(1):99–102. doi: 10.1016/0014-2999(94)90622-x. [DOI] [PubMed] [Google Scholar]
  44. Richter J., Olsson I., Andersson T. Correlation between spontaneous oscillations of cytosolic free Ca2+ and tumor necrosis factor-induced degranulation in adherent human neutrophils. J Biol Chem. 1990 Aug 25;265(24):14358–14363. [PubMed] [Google Scholar]
  45. Rogers J., Hughes R. G., Matthews E. K. Cyclic GMP inhibits protein kinase C-mediated secretion in rat pancreatic acini. J Biol Chem. 1988 Mar 15;263(8):3713–3719. [PubMed] [Google Scholar]
  46. Roques B. P., Noble F., Daugé V., Fournié-Zaluski M. C., Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993 Mar;45(1):87–146. [PubMed] [Google Scholar]
  47. Saito Y., Nakao K., Nishimura K., Sugawara A., Okumura K., Obata K., Sonoda R., Ban T., Yasue H., Imura H. Clinical application of atrial natriuretic polypeptide in patients with congestive heart failure: beneficial effects on left ventricular function. Circulation. 1987 Jul;76(1):115–124. doi: 10.1161/01.cir.76.1.115. [DOI] [PubMed] [Google Scholar]
  48. Schröder H., Ney P., Woditsch I., Schrör K. Cyclic GMP mediates SIN-1-induced inhibition of human polymorphonuclear leukocytes. Eur J Pharmacol. 1990 Jul 3;182(2):211–218. doi: 10.1016/0014-2999(90)90279-f. [DOI] [PubMed] [Google Scholar]
  49. Seymour A. A., Asaad M. M., Lanoce V. M., Fennell S. A., Cheung H. S., Rogers W. L. Inhibition of neutral endopeptidase 3.4.24.11 in conscious dogs with pacing induced heart failure. Cardiovasc Res. 1993 Jun;27(6):1015–1023. doi: 10.1093/cvr/27.6.1015. [DOI] [PubMed] [Google Scholar]
  50. Shipp M. A., Richardson N. E., Sayre P. H., Brown N. R., Masteller E. L., Clayton L. K., Ritz J., Reinherz E. L. Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II integral membrane protein. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4819–4823. doi: 10.1073/pnas.85.13.4819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Shipp M. A., Stefano G. B., D'Adamio L., Switzer S. N., Howard F. D., Sinisterra J., Scharrer B., Reinherz E. L. Downregulation of enkephalin-mediated inflammatory responses by CD10/neutral endopeptidase 24.11. Nature. 1990 Sep 27;347(6291):394–396. doi: 10.1038/347394a0. [DOI] [PubMed] [Google Scholar]
  52. Shipp M. A., Stefano G. B., Switzer S. N., Griffin J. D., Reinherz E. L. CD10 (CALLA)/neutral endopeptidase 24.11 modulates inflammatory peptide-induced changes in neutrophil morphology, migration, and adhesion proteins and is itself regulated by neutrophil activation. Blood. 1991 Oct 1;78(7):1834–1841. [PubMed] [Google Scholar]
  53. Skidgel R. A., Jackman H. L., Erdös E. G. Metabolism of substance P and bradykinin by human neutrophils. Biochem Pharmacol. 1991 May 1;41(9):1335–1344. doi: 10.1016/0006-2952(91)90106-f. [DOI] [PubMed] [Google Scholar]
  54. Sugama Y., Tiruppathi C., offakidevi K., Andersen T. T., Fenton J. W., 2nd, Malik A. B. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol. 1992 Nov;119(4):935–944. doi: 10.1083/jcb.119.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sugiyama S., Kugiyama K., Ohgushi M., Fujimoto K., Yasue H. Lysophosphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries. Role of protein kinase C. Circ Res. 1994 Apr;74(4):565–575. doi: 10.1161/01.res.74.4.565. [DOI] [PubMed] [Google Scholar]
  56. Tsao P. S., Aoki N., Lefer D. J., Johnson G., 3rd, Lefer A. M. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation. 1990 Oct;82(4):1402–1412. doi: 10.1161/01.cir.82.4.1402. [DOI] [PubMed] [Google Scholar]
  57. VanBenthuysen K. M., McMurtry I. F., Horwitz L. D. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J Clin Invest. 1987 Jan;79(1):265–274. doi: 10.1172/JCI112793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Vijayaraghavan J., Scicli A. G., Carretero O. A., Slaughter C., Moomaw C., Hersh L. B. The hydrolysis of endothelins by neutral endopeptidase 24.11 (enkephalinase). J Biol Chem. 1990 Aug 25;265(24):14150–14155. [PubMed] [Google Scholar]
  59. Werfel T., Sonntag G., Weber M. H., Götze O. Rapid increases in the membrane expression of neutral endopeptidase (CD10), aminopeptidase N (CD13), tyrosine phosphatase (CD45), and Fc gamma-RIII (CD16) upon stimulation of human peripheral leukocytes with human C5a. J Immunol. 1991 Dec 1;147(11):3909–3914. [PubMed] [Google Scholar]
  60. Wiedermann C. J., Niedermühlbichler M., Braunsteiner H., Widermann C. J. Priming of polymorphonuclear neutrophils by atrial natriuretic peptide in vitro. J Clin Invest. 1992 May;89(5):1580–1586. doi: 10.1172/JCI115752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Willerson J. T., Watson J. T., Hutton I., Templeton G. H., Fixler D. E. Reduced myocardial reflow and increased coronary vascular resistance following prolonged myocardial ischemia in the dog. Circ Res. 1975 Jun;36(6):771–781. doi: 10.1161/01.res.36.6.771. [DOI] [PubMed] [Google Scholar]
  62. Woodman R. C., Reinhardt P. H., Kanwar S., Johnston F. L., Kubes P. Effects of human neutrophil elastase (HNE) on neutrophil function in vitro and in inflamed microvessels. Blood. 1993 Oct 1;82(7):2188–2195. [PubMed] [Google Scholar]
  63. Yasuda M., Takeuchi K., Hiruma M., Iida H., Tahara A., Itagane H., Toda I., Akioka K., Teragaki M., Oku H. The complement system in ischemic heart disease. Circulation. 1990 Jan;81(1):156–163. doi: 10.1161/01.cir.81.1.156. [DOI] [PubMed] [Google Scholar]
  64. Yasue H., Obata K., Okumura K., Kurose M., Ogawa H., Matsuyama K., Jougasaki M., Saito Y., Nakao K., Imura H. Increased secretion of atrial natriuretic polypeptide from the left ventricle in patients with dilated cardiomyopathy. J Clin Invest. 1989 Jan;83(1):46–51. doi: 10.1172/JCI113883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Yasue H., Yoshimura M., Sumida H., Kikuta K., Kugiyama K., Jougasaki M., Ogawa H., Okumura K., Mukoyama M., Nakao K. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994 Jul;90(1):195–203. doi: 10.1161/01.cir.90.1.195. [DOI] [PubMed] [Google Scholar]
  66. Yoshimura M., Yasue H., Morita E., Sakaino N., Jougasaki M., Kurose M., Mukoyama M., Saito Y., Nakao K., Imura H. Hemodynamic, renal, and hormonal responses to brain natriuretic peptide infusion in patients with congestive heart failure. Circulation. 1991 Oct;84(4):1581–1588. doi: 10.1161/01.cir.84.4.1581. [DOI] [PubMed] [Google Scholar]
  67. Zimmerman B. J., Anderson D. C., Granger D. N. Neuropeptides promote neutrophil adherence to endothelial cell monolayers. Am J Physiol. 1992 Nov;263(5 Pt 1):G678–G682. doi: 10.1152/ajpgi.1992.263.5.G678. [DOI] [PubMed] [Google Scholar]
  68. de Bold A. J. Atrial natriuretic factor: a hormone produced by the heart. Science. 1985 Nov 15;230(4727):767–770. doi: 10.1126/science.2932797. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES