Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 15;97(10):2242–2250. doi: 10.1172/JCI118665

Glutathione depletion impairs transcriptional activation of heat shock genes in primary cultures of guinea pig gastric mucosal cells.

K Rokutan 1, T Hirakawa 1, S Teshima 1, S Honda 1, K Kishi 1
PMCID: PMC507303  PMID: 8636403

Abstract

When primary cultures of guinea pig gastric mucosal cells were exposed to heat (43 degree C), ethanol, hydrogen peroxide (H2O2), or diamide, heat shock proteins (HSP90, HSP70, HSP60, and HSC73) were rapidly synthesized. The extent of each HSP induction varied with the type of stress. Ethanol, H2O2, and diamide increased the syntheses of several other undefined proteins besides the HSPs. However, none of these proteins were induced by exposure to heat or the reagents, when intracellular glutathione was depleted to <10% of the control level by pretreatment with DL-buthionine-[S,R]-sulfoximine. Gel mobility shift assay using a synthetic oligonucleotide coding HSP70 heat shock element showed that glutathione depletion inhibited the heat- and the reagent-initiated activation of the heat shock factor 1 (HSF1) and did not promote the expression of HSP70 mRNA. Immunoblot analysis with antiserum against HSF1 demonstrated that the steady-state level of HSF1 was not changed in glutathione-depleted cells, but glutathione depletion inhibited the nuclear translocation of HSF1 after exposure to heat stress. These results suggest that intracellular glutathione may support early and important biochemical events in the acquisition by gastric mucosal cells of an adaptive response to irritants.

Full Text

The Full Text of this article is available as a PDF (561.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abate C., Patel L., Rauscher F. J., 3rd, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990 Sep 7;249(4973):1157–1161. doi: 10.1126/science.2118682. [DOI] [PubMed] [Google Scholar]
  2. Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  3. Amin J., Ananthan J., Voellmy R. Key features of heat shock regulatory elements. Mol Cell Biol. 1988 Sep;8(9):3761–3769. doi: 10.1128/mcb.8.9.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baler R., Dahl G., Voellmy R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol. 1993 Apr;13(4):2486–2496. doi: 10.1128/mcb.13.4.2486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlsson J., Iwami Y., Yamada T. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect Immun. 1983 Apr;40(1):70–80. doi: 10.1128/iai.40.1.70-80.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chai Y. C., Ashraf S. S., Rokutan K., Johnston R. B., Jr, Thomas J. A. S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys. 1994 Apr;310(1):273–281. doi: 10.1006/abbi.1994.1167. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Claiborne A., Miller H., Parsonage D., Ross R. P. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J. 1993 Dec;7(15):1483–1490. doi: 10.1096/fasebj.7.15.8262333. [DOI] [PubMed] [Google Scholar]
  9. Cross C. E., Halliwell B., Allen A. Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet. 1984 Jun 16;1(8390):1328–1330. doi: 10.1016/s0140-6736(84)91822-1. [DOI] [PubMed] [Google Scholar]
  10. Dröge W., Schulze-Osthoff K., Mihm S., Galter D., Schenk H., Eck H. P., Roth S., Gmünder H. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J. 1994 Nov;8(14):1131–1138. [PubMed] [Google Scholar]
  11. Esposito F., Agosti V., Morrone G., Morra F., Cuomo C., Russo T., Venuta S., Cimino F. Inhibition of the differentiation of human myeloid cell lines by redox changes induced through glutathione depletion. Biochem J. 1994 Aug 1;301(Pt 3):649–653. doi: 10.1042/bj3010649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freeman M. L., Sierra-Rivera E., Voorhees G. J., Eisert D. R., Meredith M. J. Synthesis of hsp-70 is enhanced in glutathione-depleted Hep G2 cells. Radiat Res. 1993 Sep;135(3):387–393. doi: 10.2307/3578879. [DOI] [PubMed] [Google Scholar]
  13. Galter D., Mihm S., Dröge W. Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem. 1994 Apr 15;221(2):639–648. doi: 10.1111/j.1432-1033.1994.tb18776.x. [DOI] [PubMed] [Google Scholar]
  14. Guehmann S., Vorbrueggen G., Kalkbrenner F., Moelling K. Reduction of a conserved Cys is essential for Myb DNA-binding. Nucleic Acids Res. 1992 May 11;20(9):2279–2286. doi: 10.1093/nar/20.9.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hiraishi H., Terano A., Ota S., Mutoh H., Sugimoto T., Razandi M., Ivey K. J. Antioxidant defenses of cultured gastric cells against oxygen metabolites: role of GSH redox cycle and endogenous catalase. Am J Physiol. 1991 Dec;261(6 Pt 1):G921–G928. doi: 10.1152/ajpgi.1991.261.6.G921. [DOI] [PubMed] [Google Scholar]
  16. Huang L. E., Zhang H., Bae S. W., Liu A. Y. Thiol reducing reagents inhibit the heat shock response. Involvement of a redox mechanism in the heat shock signal transduction pathway. J Biol Chem. 1994 Dec 2;269(48):30718–30725. [PubMed] [Google Scholar]
  17. Itoh H., Toyoshima I., Mizunuma H., Kobayashi R., Tashima Y. Three-step purification method and characterization of the bovine brain 90-kDa heat shock protein. Arch Biochem Biophys. 1990 Nov 1;282(2):290–296. doi: 10.1016/0003-9861(90)90119-j. [DOI] [PubMed] [Google Scholar]
  18. Kumar S., Rabson A. B., Gélinas C. The RxxRxRxxC motif conserved in all Rel/kappa B proteins is essential for the DNA-binding activity and redox regulation of the v-Rel oncoprotein. Mol Cell Biol. 1992 Jul;12(7):3094–3106. doi: 10.1128/mcb.12.7.3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lis J., Wu C. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell. 1993 Jul 16;74(1):1–4. doi: 10.1016/0092-8674(93)90286-y. [DOI] [PubMed] [Google Scholar]
  20. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  21. Meister A. Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem. 1994 Apr 1;269(13):9397–9400. [PubMed] [Google Scholar]
  22. Mitchell J. B., Russo A., Kinsella T. J., Glatstein E. Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Res. 1983 Mar;43(3):987–991. [PubMed] [Google Scholar]
  23. Morimoto R. I. Cells in stress: transcriptional activation of heat shock genes. Science. 1993 Mar 5;259(5100):1409–1410. doi: 10.1126/science.8451637. [DOI] [PubMed] [Google Scholar]
  24. Mosser D. D., Theodorakis N. G., Morimoto R. I. Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol. 1988 Nov;8(11):4736–4744. doi: 10.1128/mcb.8.11.4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mutoh H., Ota S., Hiraishi H., Ivey K. J., Terano A., Sugimoto T. Reduced glutathione protects cultured gastric mucosal cells from suckling rats against acid. Am J Physiol. 1991 Jul;261(1 Pt 1):G65–G70. doi: 10.1152/ajpgi.1991.261.1.G65. [DOI] [PubMed] [Google Scholar]
  26. Nakai A., Morimoto R. I. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol. 1993 Apr;13(4):1983–1997. doi: 10.1128/mcb.13.4.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nakamura K., Rokutan K., Marui N., Aoike A., Kawai K. Induction of heat shock proteins and their implication in protection against ethanol-induced damage in cultured guinea pig gastric mucosal cells. Gastroenterology. 1991 Jul;101(1):161–166. doi: 10.1016/0016-5085(91)90473-x. [DOI] [PubMed] [Google Scholar]
  28. Nakayama T., Kodama M., Nagata C. Generation of hydrogen peroxide and superoxide anion radical from cigarette smoke. Gan. 1984 Feb;75(2):95–98. [PubMed] [Google Scholar]
  29. Novak A., Goyal N., Gronostajski R. M. Four conserved cysteine residues are required for the DNA binding activity of nuclear factor I. J Biol Chem. 1992 Jun 25;267(18):12986–12990. [PubMed] [Google Scholar]
  30. Otaka M., Itoh H., Kuwabara T., Zeniya A., Fujimori S., Tashima Y., Masamune O. Induction of a 60-kDa heat shock protein in rat pancreas by water-immersion stress. Int J Biochem. 1993 Dec;25(12):1769–1773. [PubMed] [Google Scholar]
  31. Perisic O., Xiao H., Lis J. T. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell. 1989 Dec 1;59(5):797–806. doi: 10.1016/0092-8674(89)90603-x. [DOI] [PubMed] [Google Scholar]
  32. Rabindran S. K., Giorgi G., Clos J., Wu C. Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6906–6910. doi: 10.1073/pnas.88.16.6906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rabindran S. K., Haroun R. I., Clos J., Wisniewski J., Wu C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science. 1993 Jan 8;259(5092):230–234. doi: 10.1126/science.8421783. [DOI] [PubMed] [Google Scholar]
  34. Reed D. J., Babson J. R., Beatty P. W., Brodie A. E., Ellis W. W., Potter D. W. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal Biochem. 1980 Jul 15;106(1):55–62. doi: 10.1016/0003-2697(80)90118-9. [DOI] [PubMed] [Google Scholar]
  35. Robert A., Eberle D., Kaplowitz N. Role of glutathione in gastric mucosal cytoprotection. Am J Physiol. 1984 Sep;247(3 Pt 1):G296–G304. doi: 10.1152/ajpgi.1984.247.3.G296. [DOI] [PubMed] [Google Scholar]
  36. Robert A., Nezamis J. E., Lancaster C., Davis J. P., Field S. O., Hanchar A. J. Mild irritants prevent gastric necrosis through "adaptive cytoprotection" mediated by prostaglandins. Am J Physiol. 1983 Jul;245(1):G113–G121. doi: 10.1152/ajpgi.1983.245.1.G113. [DOI] [PubMed] [Google Scholar]
  37. Rokutan K., Johnston R. B., Jr, Kawai K. Oxidative stress induces S-thiolation of specific proteins in cultured gastric mucosal cells. Am J Physiol. 1994 Feb;266(2 Pt 1):G247–G254. doi: 10.1152/ajpgi.1994.266.2.G247. [DOI] [PubMed] [Google Scholar]
  38. Rokutan K., Thomas J. A., Johnston R. B., Jr Phagocytosis and stimulation of the respiratory burst by phorbol diester initiate S-thiolation of specific proteins in macrophages. J Immunol. 1991 Jul 1;147(1):260–264. [PubMed] [Google Scholar]
  39. Rokutan K., Thomas J. A., Sies H. Specific S-thiolation of a 30-kDa cytosolic protein from rat liver under oxidative stress. Eur J Biochem. 1989 Jan 15;179(1):233–239. doi: 10.1111/j.1432-1033.1989.tb14546.x. [DOI] [PubMed] [Google Scholar]
  40. Sarge K. D., Murphy S. P., Morimoto R. I. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 1993 Mar;13(3):1392–1407. doi: 10.1128/mcb.13.3.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sarge K. D., Zimarino V., Holm K., Wu C., Morimoto R. I. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 1991 Oct;5(10):1902–1911. doi: 10.1101/gad.5.10.1902. [DOI] [PubMed] [Google Scholar]
  42. Saunders E. L., Maines M. D., Meredith M. J., Freeman M. L. Enhancement of heme oxygenase-1 synthesis by glutathione depletion in Chinese hamster ovary cells. Arch Biochem Biophys. 1991 Aug 1;288(2):368–373. doi: 10.1016/0003-9861(91)90208-z. [DOI] [PubMed] [Google Scholar]
  43. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schuetz T. J., Gallo G. J., Sheldon L., Tempst P., Kingston R. E. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6911–6915. doi: 10.1073/pnas.88.16.6911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sistonen L., Sarge K. D., Morimoto R. I. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol. 1994 Mar;14(3):2087–2099. doi: 10.1128/mcb.14.3.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Storz G., Tartaglia L. A., Ames B. N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science. 1990 Apr 13;248(4952):189–194. doi: 10.1126/science.2183352. [DOI] [PubMed] [Google Scholar]
  47. Szabo S., Trier J. S., Frankel P. W. Sulfhydryl compounds may mediate gastric cytoprotection. Science. 1981 Oct 9;214(4517):200–202. doi: 10.1126/science.7280691. [DOI] [PubMed] [Google Scholar]
  48. Victor B. E., Schmidt K. L., Smith G. S., Miller T. A. Protection against ethanol injury in the canine stomach: role of mucosal glutathione. Am J Physiol. 1991 Dec;261(6 Pt 1):G966–G973. doi: 10.1152/ajpgi.1991.261.6.G966. [DOI] [PubMed] [Google Scholar]
  49. Wakui H., Itoh H., Tashima Y., Kobayashi R., Nakamoto Y., Miura A. B. Specific antibodies against the stress-inducible 72-kDa protein, a member of the heat-shock protein hsp70, in healthy human subjects. Int J Biochem. 1991;23(10):975–978. doi: 10.1016/0020-711x(91)90132-7. [DOI] [PubMed] [Google Scholar]
  50. Xiao H., Lis J. T. Germline transformation used to define key features of heat-shock response elements. Science. 1988 Mar 4;239(4844):1139–1142. doi: 10.1126/science.3125608. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES