Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 15;97(10):2251–2259. doi: 10.1172/JCI118666

The double edged sword of the immune response: mutational analysis of a murine anti-pneumococcal, anti-DNA antibody.

C Putterman 1, W Limpanasithikul 1, M Edelman 1, B Diamond 1
PMCID: PMC507304  PMID: 8636404

Abstract

Anti-double-stranded (ds) DNA antibodies are not only an important diagnostic marker for SLE, but also play an important role in tissue injury. Microbial antigen may be a stimulus for the production of these antibodies. We isolated 99D.7E, an IgG2b monoclonal antibody from a nonautoimmune BALB/c mouse that is cross-reactive with both dsDNA and phosphorylcholine, the dominant hapten on the pneumococcal cell wall. While partially protective against a bacterial challenge, 99D.7E is also pathogenic to the kidney. To identify those molecular motifs that confer on anti-PC antibodies the potential for autoreactivity, we created a panel of 99D.7E mutants with single amino acid substitutions in the heavy chain, and examined the changes in antigen binding and renal deposition. Our results support the hypothesis that charge and affinity for dsDNA are not adequate predictors of the pathogenicity of anti-DNA antibodies. Differential renal damage from anti-dsDNA antibodies may be due to differences in fine specificity, rather than differential affinity for dsDNA. Importantly, high affinity IgG antibodies cross-reactive with bacterial and self antigen exist and can display pathogenic potential, suggesting that defects in peripheral regulation of B cells, activated by foreign antigen but cross-reactive with self antigen, might lead to autoimmune disorders.

Full Text

The Full Text of this article is available as a PDF (488.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel G. B., Silva F. G., Pirani C. L., Meltzer J. I., Estes D. Renal involvement in systemic lupud erythematosus (SLE): a study of 56 patients emphasizing histologic classification. Medicine (Baltimore) 1978 Sep;57(5):371–410. doi: 10.1097/00005792-197809000-00001. [DOI] [PubMed] [Google Scholar]
  2. Bernstein K. A., Valerio R. D., Lefkowith J. B. Glomerular binding activity in MRL lpr serum consists of antibodies that bind to a DNA/histone/type IV collagen complex. J Immunol. 1995 Mar 1;154(5):2424–2433. [PubMed] [Google Scholar]
  3. Bootsma H., Spronk P., Derksen R., de Boer G., Wolters-Dicke H., Hermans J., Limburg P., Gmelig-Meyling F., Kater L., Kallenberg C. Prevention of relapses in systemic lupus erythematosus. Lancet. 1995 Jun 24;345(8965):1595–1599. doi: 10.1016/s0140-6736(95)90114-0. [DOI] [PubMed] [Google Scholar]
  4. Casson L. P., Manser T. Random mutagenesis of two complementarity determining region amino acids yields an unexpectedly high frequency of antibodies with increased affinity for both cognate antigen and autoantigen. J Exp Med. 1995 Sep 1;182(3):743–750. doi: 10.1084/jem.182.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diamond B., Katz J. B., Paul E., Aranow C., Lustgarten D., Scharff M. D. The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol. 1992;10:731–757. doi: 10.1146/annurev.iy.10.040192.003503. [DOI] [PubMed] [Google Scholar]
  6. Diamond B., Scharff M. D. Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5841–5844. doi: 10.1073/pnas.81.18.5841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehrenstein M. R., Katz D. R., Griffiths M. H., Papadaki L., Winkler T. H., Kalden J. R., Isenberg D. A. Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int. 1995 Sep;48(3):705–711. doi: 10.1038/ki.1995.341. [DOI] [PubMed] [Google Scholar]
  8. Eilat D., Anderson W. F. Structure-function correlates of autoantibodies to nucleic acids. Lessons from immunochemical, genetic and structural studies. Mol Immunol. 1994 Dec;31(18):1377–1390. doi: 10.1016/0161-5890(94)90154-6. [DOI] [PubMed] [Google Scholar]
  9. Eilat D., Webster D. M., Rees A. R. V region sequences of anti-DNA and anti-RNA autoantibodies from NZB/NZW F1 mice. J Immunol. 1988 Sep 1;141(5):1745–1753. [PubMed] [Google Scholar]
  10. Emlen W., Mannik M. Clearance of circulating DNA-anti-DNA immune complexes in mice. J Exp Med. 1982 Apr 1;155(4):1210–1215. doi: 10.1084/jem.155.4.1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foster M. H., Cizman B., Madaio M. P. Nephritogenic autoantibodies in systemic lupus erythematosus: immunochemical properties, mechanisms of immune deposition, and genetic origins. Lab Invest. 1993 Nov;69(5):494–507. [PubMed] [Google Scholar]
  12. Fournié G. J. Circulating DNA and lupus nephritis. Kidney Int. 1988 Feb;33(2):487–497. doi: 10.1038/ki.1988.25. [DOI] [PubMed] [Google Scholar]
  13. Grayzel A., Solomon A., Aranow C., Diamond B. Antibodies elicited by pneumococcal antigens bear an anti-DNA--associated idiotype. J Clin Invest. 1991 Mar;87(3):842–846. doi: 10.1172/JCI115088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gur H., Kopolovic Y., Gross D. J. Chronic predominant interstitial nephritis in a patient with systemic lupus erythematosus: a follow up of three years and review of the literature. Ann Rheum Dis. 1987 Aug;46(8):617–623. doi: 10.1136/ard.46.8.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  16. Hoch S., Schwaber J. Identification and sequence of the VH gene elements encoding a human anti-DNA antibody. J Immunol. 1987 Sep 1;139(5):1689–1693. [PubMed] [Google Scholar]
  17. Jarrett M. P., Sablay L. B., Walter L., Barland P., Grayzel A. I. The effect of continuous normalization of serum hemolytic complement on the course of lupus nephritis: a five year prospective study. Am J Med. 1981 May;70(5):1067–1072. doi: 10.1016/0002-9343(81)90870-6. [DOI] [PubMed] [Google Scholar]
  18. Katz J. B., Limpanasithikul W., Diamond B. Mutational analysis of an autoantibody: differential binding and pathogenicity. J Exp Med. 1994 Sep 1;180(3):925–932. doi: 10.1084/jem.180.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kramers C., Hylkema M. N., van Bruggen M. C., van de Lagemaat R., Dijkman H. B., Assmann K. J., Smeenk R. J., Berden J. H. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo. J Clin Invest. 1994 Aug;94(2):568–577. doi: 10.1172/JCI117371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Limpanasithikul W., Ray S., Diamond B. Cross-reactive antibodies have both protective and pathogenic potential. J Immunol. 1995 Jul 15;155(2):967–973. [PubMed] [Google Scholar]
  21. Magil A. B., Tyler M. Tubulo-interstitial disease in lupus nephritis. A morphometric study. Histopathology. 1984 Jan;8(1):81–87. doi: 10.1111/j.1365-2559.1984.tb02324.x. [DOI] [PubMed] [Google Scholar]
  22. Marion T. N., Tillman D. M., Jou N. T., Hill R. J. Selection of immunoglobulin variable regions in autoimmunity to DNA. Immunol Rev. 1992 Aug;128:123–149. doi: 10.1111/j.1600-065x.1992.tb00835.x. [DOI] [PubMed] [Google Scholar]
  23. Naparstek Y., Ben-Yehuda A., Madaio M. P., Bar-Tana R., Schuger L., Pizov G., Neeman Z. V., Cohen I. R. Binding of anti-DNA antibodies and inhibition of glomerulonephritis in MRL-lpr/lpr mice by heparin. Arthritis Rheum. 1990 Oct;33(10):1554–1559. doi: 10.1002/art.1780331013. [DOI] [PubMed] [Google Scholar]
  24. Nieto A., Gaya A., Jansa M., Moreno C., Vives J. Direct measurement of antibody affinity distribution by hapten-inhibition enzyme immunoassay. Mol Immunol. 1984 Jun;21(6):537–543. doi: 10.1016/0161-5890(84)90070-1. [DOI] [PubMed] [Google Scholar]
  25. Ohnishi K., Ebling F. M., Mitchell B., Singh R. R., Hahn B. H., Tsao B. P. Comparison of pathogenic and non-pathogenic murine antibodies to DNA: antigen binding and structural characteristics. Int Immunol. 1994 Jun;6(6):817–830. doi: 10.1093/intimm/6.6.817. [DOI] [PubMed] [Google Scholar]
  26. Park M. H., D'Agati V., Appel G. B., Pirani C. L. Tubulointerstitial disease in lupus nephritis: relationship to immune deposits, interstitial inflammation, glomerular changes, renal function, and prognosis. Nephron. 1986;44(4):309–319. doi: 10.1159/000184012. [DOI] [PubMed] [Google Scholar]
  27. Perlmutter R. M., Crews S. T., Douglas R., Sorensen G., Johnson N., Nivera N., Gearhart P. J., Hood L. The generation of diversity in phosphorylcholine-binding antibodies. Adv Immunol. 1984;35:1–37. doi: 10.1016/s0065-2776(08)60572-6. [DOI] [PubMed] [Google Scholar]
  28. Radic M. Z., Weigert M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol. 1994;12:487–520. doi: 10.1146/annurev.iy.12.040194.002415. [DOI] [PubMed] [Google Scholar]
  29. Ray S. K., Putterman C., Diamond B. Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2019–2024. doi: 10.1073/pnas.93.5.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ray S., Diamond B. Generation of a fusion partner to sample the repertoire of splenic B cells destined for apoptosis. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5548–5551. doi: 10.1073/pnas.91.12.5548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Satoh M., Kumar A., Kanwar Y. S., Reeves W. H. Anti-nuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10934–10938. doi: 10.1073/pnas.92.24.10934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Satow Y., Cohen G. H., Padlan E. A., Davies D. R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J Mol Biol. 1986 Aug 20;190(4):593–604. doi: 10.1016/0022-2836(86)90245-7. [DOI] [PubMed] [Google Scholar]
  33. Schmiedeke T. M., Stöckl F. W., Weber R., Sugisaki Y., Batsford S. R., Vogt A. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis. J Exp Med. 1989 Jun 1;169(6):1879–1894. doi: 10.1084/jem.169.6.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sharon J., Gefter M. L., Wysocki L. J., Margolies M. N. Recurrent somatic mutations in mouse antibodies to p-azophenylarsonate increase affinity for hapten. J Immunol. 1989 Jan 15;142(2):596–601. [PubMed] [Google Scholar]
  35. Tan E. M. Autoantibodies to nuclear antigens (ANA): their immunobiology and medicine. Adv Immunol. 1982;33:167–240. doi: 10.1016/s0065-2776(08)60836-6. [DOI] [PubMed] [Google Scholar]
  36. Termaat R. M., Assmann K. J., Dijkman H. B., van Gompel F., Smeenk R. J., Berden J. H. Anti-DNA antibodies can bind to the glomerulus via two distinct mechanisms. Kidney Int. 1992 Dec;42(6):1363–1371. doi: 10.1038/ki.1992.428. [DOI] [PubMed] [Google Scholar]
  37. Termaat R. M., Brinkman K., van Gompel F., van den Heuvel L. P., Veerkamp J. H., Smeenk R. J., Berden J. H. Cross-reactivity of monoclonal anti-DNA antibodies with heparan sulfate is mediated via bound DNA/histone complexes. J Autoimmun. 1990 Oct;3(5):531–545. doi: 10.1016/s0896-8411(05)80019-8. [DOI] [PubMed] [Google Scholar]
  38. Tsao B. P., Ohnishi K., Cheroutre H., Mitchell B., Teitell M., Mixter P., Kronenberg M., Hahn B. H. Failed self-tolerance and autoimmunity in IgG anti-DNA transgenic mice. J Immunol. 1992 Jul 1;149(1):350–358. [PubMed] [Google Scholar]
  39. Unni K. K., Holley K. E., McDuffie F. C., Titus J. L. Comparative study of NZB mice under germfree and conventional conditions. J Rheumatol. 1975 Mar;2(1):36–44. [PubMed] [Google Scholar]
  40. Zack D. J., Yamamoto K., Wong A. L., Stempniak M., French C., Weisbart R. H. DNA mimics a self-protein that may be a target for some anti-DNA antibodies in systemic lupus erythematosus. J Immunol. 1995 Feb 15;154(4):1987–1994. [PubMed] [Google Scholar]
  41. Zupko K., Waltenbaugh C., Diamond B. Use of anti-idiotypic antibodies to identify a receptor for the T-cell I-J determinant. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7399–7403. doi: 10.1073/pnas.82.21.7399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. de StGroth S. F., Scheidegger D. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods. 1980;35(1-2):1–21. doi: 10.1016/0022-1759(80)90146-5. [DOI] [PubMed] [Google Scholar]
  43. el-Roiey A., Sela O., Isenberg D. A., Feldman R., Colaco B. C., Kennedy R. C., Shoenfeld Y. The sera of patients with Klebsiella infections contain a common anti-DNA idiotype (16/6) Id and anti-polynucleotide activity. Clin Exp Immunol. 1987 Mar;67(3):507–515. [PMC free article] [PubMed] [Google Scholar]
  44. ter Borg E. J., Horst G., Hummel E. J., Limburg P. C., Kallenberg C. G. Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum. 1990 May;33(5):634–643. doi: 10.1002/art.1780330505. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES