Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 15;97(10):2283–2288. doi: 10.1172/JCI118670

Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension.

F E Albrecht 1, J Drago 1, R A Felder 1, M P Printz 1, G M Eisner 1, J E Robillard 1, D R Sibley 1, H J Westphal 1, P A Jose 1
PMCID: PMC507308  PMID: 8636408

Abstract

Since dopamine produced by the kidney is an intrarenal regulator of sodium transport, an abnormality of the dopaminergic system may be important in the pathogenesis of hypertension. In the spontaneously hypertensive rat (SHR), in spite of normal renal production of dopamine and receptor density, there is defective transduction of the D1 receptor signal in renal proximal tubules, resulting in decreased inhibition of sodium transport (Na+/H+ exchanger [NHE] and Na+/K+ATPase activity) by dopamine. To determine if impaired D1 receptor regulation of NHE in proximal tubules is related to hypertension, studies were performed in a F2 generation from female Wistar Kyoto (WKY) and male SHR crosses. A D1 agonist, SKF 81297, inhibited (37.6 +/- 4.7%) NHE activity in brush border membranes of normotensive F2s (systolic blood pressure < 140 mm Hg, n = 7) but not in hypertensive F2s (n = 21). Furthermore, a D1 agonist, SKF 38393, when infused into the renal artery, dose dependently increased sodium excretion in normotensive F2s (n = 3) without altering renal blood flow but was inactive in hypertensive F2s (n = 21). Since the major D1 receptor gene expressed in renal proximal tubules is the D1A subtype, we determined the importance of this gene in the control of blood pressure in mice lacking functional D1A receptors. Systolic blood pressure was greater in homozygous (n = 6) and heterozygous (n = 5) mice compared to normal sex matched litter mate controls (n = 12); moreover, the mice lacking one or both D1A alleles developed diastolic hypertension. The cosegregation with hypertension of an impaired D1 receptor regulation of renal sodium transport and the development of elevated systolic and diastolic pressure in mice lacking one or both D1A alleles suggest a causal relationship of the D1A receptor gene with hypertension.

Full Text

The Full Text of this article is available as a PDF (187.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertorello A., Hökfelt T., Goldstein M., Aperia A. Proximal tubule Na+-K+-ATPase activity is inhibited during high-salt diet: evidence for DA-mediated effect. Am J Physiol. 1988 Jun;254(6 Pt 2):F795–F801. doi: 10.1152/ajprenal.1988.254.6.F795. [DOI] [PubMed] [Google Scholar]
  2. Chen C. J., Vyas S. J., Eichberg J., Lokhandwala M. F. Diminished phospholipase C activation by dopamine in spontaneously hypertensive rats. Hypertension. 1992 Jan;19(1):102–108. doi: 10.1161/01.hyp.19.1.102. [DOI] [PubMed] [Google Scholar]
  3. Chen C., Beach R. E., Lokhandwala M. F. Dopamine fails to inhibit renal tubular sodium pump in hypertensive rats. Hypertension. 1993 Mar;21(3):364–372. doi: 10.1161/01.hyp.21.3.364. [DOI] [PubMed] [Google Scholar]
  4. Civelli O., Bunzow J. R., Grandy D. K. Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol. 1993;33:281–307. doi: 10.1146/annurev.pa.33.040193.001433. [DOI] [PubMed] [Google Scholar]
  5. Clark B. A., Rosa R. M., Epstein F. H., Young J. B., Landsberg L. Altered dopaminergic responses in hypertension. Hypertension. 1992 Jun;19(6 Pt 1):589–594. doi: 10.1161/01.hyp.19.6.589. [DOI] [PubMed] [Google Scholar]
  6. Deng Y., Rapp J. P. Cosegregation of blood pressure with angiotensin converting enzyme and atrial natriuretic peptide receptor genes using Dahl salt-sensitive rats. Nat Genet. 1992 Jul;1(4):267–272. doi: 10.1038/ng0792-267. [DOI] [PubMed] [Google Scholar]
  7. Drago J., Gerfen C. R., Lachowicz J. E., Steiner H., Hollon T. R., Love P. E., Ooi G. T., Grinberg A., Lee E. J., Huang S. P. Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12564–12568. doi: 10.1073/pnas.91.26.12564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eisner G. M., Yamaguchi I., Felder R. A., Asico L. D., Jose P. A. Role of renal dopamine D1 receptors in natriuresis induced by calcium channel blockers. Am J Physiol. 1994 Dec;267(6 Pt 2):F965–F970. doi: 10.1152/ajprenal.1994.267.6.F965. [DOI] [PubMed] [Google Scholar]
  9. Felder C. C., Albrecht F. E., Campbell T., Eisner G. M., Jose P. A. cAMP-independent, G protein-linked inhibition of Na+/H+ exchange in renal brush border by D1 dopamine agonists. Am J Physiol. 1993 Jun;264(6 Pt 2):F1032–F1037. doi: 10.1152/ajprenal.1993.264.6.F1032. [DOI] [PubMed] [Google Scholar]
  10. Felder C. C., Campbell T., Albrecht F., Jose P. A. Dopamine inhibits Na(+)-H+ exchanger activity in renal BBMV by stimulation of adenylate cyclase. Am J Physiol. 1990 Aug;259(2 Pt 2):F297–F303. doi: 10.1152/ajprenal.1990.259.2.F297. [DOI] [PubMed] [Google Scholar]
  11. Felder R. A., Kinoshita S., Ohbu K., Mouradian M. M., Sibley D. R., Monsma F. J., Jr, Minowa T., Minowa M. T., Canessa L. M., Jose P. A. Organ specificity of the dopamine1 receptor/adenylyl cyclase coupling defect in spontaneously hypertensive rats. Am J Physiol. 1993 Apr;264(4 Pt 2):R726–R732. doi: 10.1152/ajpregu.1993.264.4.R726. [DOI] [PubMed] [Google Scholar]
  12. Felder R. A., Seikaly M. G., Cody P., Eisner G. M., Jose P. A. Attenuated renal response to dopaminergic drugs in spontaneously hypertensive rats. Hypertension. 1990 Jun;15(6 Pt 1):560–569. doi: 10.1161/01.hyp.15.6.560. [DOI] [PubMed] [Google Scholar]
  13. Gesek F. A., Schoolwerth A. C. Hormone responses of proximal Na(+)-H+ exchanger in spontaneously hypertensive rats. Am J Physiol. 1991 Sep;261(3 Pt 2):F526–F536. doi: 10.1152/ajprenal.1991.261.3.F526. [DOI] [PubMed] [Google Scholar]
  14. Gingrich J. A., Caron M. G. Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci. 1993;16:299–321. doi: 10.1146/annurev.ne.16.030193.001503. [DOI] [PubMed] [Google Scholar]
  15. Grossman E., Hoffman A., Tamrat M., Armando I., Keiser H. R., Goldstein D. S. Endogenous dopa and dopamine responses to dietary salt loading in salt-sensitive rats. J Hypertens. 1991 Mar;9(3):259–263. doi: 10.1097/00004872-199103000-00010. [DOI] [PubMed] [Google Scholar]
  16. Hansell P., Fasching A. The effect of dopamine receptor blockade on natriuresis is dependent on the degree of hypervolemia. Kidney Int. 1991 Feb;39(2):253–258. doi: 10.1038/ki.1991.30. [DOI] [PubMed] [Google Scholar]
  17. Hegde S. S., Jadhav A. L., Lokhandwala M. F. Role of kidney dopamine in the natriuretic response to volume expansion in rats. Hypertension. 1989 Jun;13(6 Pt 2):828–834. doi: 10.1161/01.hyp.13.6.828. [DOI] [PubMed] [Google Scholar]
  18. Hilbert P., Lindpaintner K., Beckmann J. S., Serikawa T., Soubrier F., Dubay C., Cartwright P., De Gouyon B., Julier C., Takahasi S. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature. 1991 Oct 10;353(6344):521–529. doi: 10.1038/353521a0. [DOI] [PubMed] [Google Scholar]
  19. Horiuchi A., Albrecht F. E., Eisner G. M., Jose P. A., Felder R. A. Renal dopamine receptors and pre- and post-cAMP-mediated Na+ transport defect in spontaneously hypertensive rats. Am J Physiol. 1992 Dec;263(6 Pt 2):F1105–F1111. doi: 10.1152/ajprenal.1992.263.6.F1105. [DOI] [PubMed] [Google Scholar]
  20. Jacob H. J., Lindpaintner K., Lincoln S. E., Kusumi K., Bunker R. K., Mao Y. P., Ganten D., Dzau V. J., Lander E. S. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell. 1991 Oct 4;67(1):213–224. doi: 10.1016/0092-8674(91)90584-l. [DOI] [PubMed] [Google Scholar]
  21. John S. W., Krege J. H., Oliver P. M., Hagaman J. R., Hodgin J. B., Pang S. C., Flynn T. G., Smithies O. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995 Feb 3;267(5198):679–681. doi: 10.1126/science.7839143. [DOI] [PubMed] [Google Scholar]
  22. Jose P. A., Raymond J. R., Bates M. D., Aperia A., Felder R. A., Carey R. M. The renal dopamine receptors. J Am Soc Nephrol. 1992 Feb;2(8):1265–1278. doi: 10.1681/ASN.V281265. [DOI] [PubMed] [Google Scholar]
  23. Kinoshita S., Sidhu A., Felder R. A. Defective dopamine-1 receptor adenylate cyclase coupling in the proximal convoluted tubule from the spontaneously hypertensive rat. J Clin Invest. 1989 Dec;84(6):1849–1856. doi: 10.1172/JCI114371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
  25. Kurtz T. W., Spence M. A. Genetics of essential hypertension. Am J Med. 1993 Jan;94(1):77–84. doi: 10.1016/0002-9343(93)90124-8. [DOI] [PubMed] [Google Scholar]
  26. Lin M. T., Yang J. J. Stimulation of the nigrostriatal dopamine system produces hypertension and tachycardia in rats. Am J Physiol. 1994 Jun;266(6 Pt 2):H2489–H2496. doi: 10.1152/ajpheart.1994.266.6.H2489. [DOI] [PubMed] [Google Scholar]
  27. Nash S. R., Godinot N., Caron M. G. Cloning and characterization of the opossum kidney cell D1 dopamine receptor: expression of identical D1A and D1B dopamine receptor mRNAs in opossum kidney and brain. Mol Pharmacol. 1993 Nov;44(5):918–925. [PubMed] [Google Scholar]
  28. Nishi A., Eklöf A. C., Bertorello A. M., Aperia A. Dopamine regulation of renal Na+,K(+)-ATPase activity is lacking in Dahl salt-sensitive rats. Hypertension. 1993 Jun;21(6 Pt 1):767–771. doi: 10.1161/01.hyp.21.6.767. [DOI] [PubMed] [Google Scholar]
  29. Ohbu K., Felder R. A. Nephron specificity of dopamine receptor-adenylyl cyclase defect in spontaneous hypertension. Am J Physiol. 1993 Feb;264(2 Pt 2):F274–F279. doi: 10.1152/ajprenal.1993.264.2.F274. [DOI] [PubMed] [Google Scholar]
  30. Ohbu K., Hendley E. D., Yamaguchi I., Felder R. A. Renal dopamine-1 receptors in hypertensive inbred rat strains with and without hyperactivity. Hypertension. 1993 Apr;21(4):485–490. doi: 10.1161/01.hyp.21.4.485. [DOI] [PubMed] [Google Scholar]
  31. Ohbu K., Kaskel F. J., Kinoshita S., Felder R. A. Dopamine-1 receptors in the proximal convoluted tubule of Dahl rats: defective coupling to adenylate cyclase. Am J Physiol. 1995 Jan;268(1 Pt 2):R231–R235. doi: 10.1152/ajpregu.1995.268.1.R231. [DOI] [PubMed] [Google Scholar]
  32. Pelayo J. C., Fildes R. D., Eisner G. M., Jose P. A. Effects of dopamine blockade on renal sodium excretion. Am J Physiol. 1983 Aug;245(2):F247–F253. doi: 10.1152/ajprenal.1983.245.2.F247. [DOI] [PubMed] [Google Scholar]
  33. Schlager G., Chao C. S. The role of dominance and epistasis in the genetic control of blood pressure in rodent models of hypertension. Clin Exp Hypertens A. 1991;13(5):947–953. doi: 10.3109/10641969109042100. [DOI] [PubMed] [Google Scholar]
  34. Sibley D. R., Monsma F. J., Jr Molecular biology of dopamine receptors. Trends Pharmacol Sci. 1992 Feb;13(2):61–69. doi: 10.1016/0165-6147(92)90025-2. [DOI] [PubMed] [Google Scholar]
  35. Siragy H. M., Felder R. A., Howell N. L., Chevalier R. L., Peach M. J., Carey R. M. Evidence that intrarenal dopamine acts as a paracrine substance at the renal tubule. Am J Physiol. 1989 Sep;257(3 Pt 2):F469–F477. doi: 10.1152/ajprenal.1989.257.3.F469. [DOI] [PubMed] [Google Scholar]
  36. Yen T. T., Yu P. L., Roeder H., Willard P. W. A genetic study of hypertension in Okamoto-Aoki spontaneously hypertensive rats. Heredity (Edinb) 1974 Dec;33(3):309–316. doi: 10.1038/hdy.1974.97. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES