Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 15;97(10):2299–2307. doi: 10.1172/JCI118672

A femtomolar-acting neuroprotective peptide.

D E Brenneman 1, I Gozes 1
PMCID: PMC507310  PMID: 8636410

Abstract

A novel 14-amino acid peptide, with stress-protein-like sequences, exhibiting neuroprotection at unprecedented concentrations, is revealed. This peptide prevented neuronal cell death associated with the envelope protein (GP 120) from HIV, with excitotoxicity (N-methyl d-aspartate), with the beta amyloid peptide (putative cytotoxin in Alzheimer's disease), and with tetrodotoxin (electrical blockade). The peptide was designed to contain a sequence derived from a new neuroprotective protein secreted by astroglial cells in the presence of vasoactive intestinal peptide. The neurotrophic protein was isolated by sequential chromatographic methods combining ion exchange, size separation, and hydrophobic interaction. The protein (mol mass, 14 kD and pI, 8.3 +/- 0.25) was named activity-dependent neurotrophic factor, as it protected neurons from death associated with electrical blockade. Peptide sequencing led to the synthesis of the novel 14-amino acid peptide that was homologous, but not identical, to an intracellular stress protein, heat shock protein 60. Neutralizing antiserum to heat shock protein 60 produced neuronal cell death that could be prevented by cotreatment with the novel protein, suggesting the existence of extracellular stress-like proteins with neuroprotective properties. These studies identify a potent neuroprotective glial protein and an active peptide that provide a basis for developing treatments of currently intractable neurodegenerative diseases.

Full Text

The Full Text of this article is available as a PDF (219.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agoston D. V., Eiden L. E., Brenneman D. E., Gozes I. Spontaneous electrical activity regulates vasoactive intestinal peptide expression in dissociated spinal cord cell cultures. Brain Res Mol Brain Res. 1991 Jun;10(3):235–240. doi: 10.1016/0169-328x(91)90066-7. [DOI] [PubMed] [Google Scholar]
  2. Brenneman D. E., Eiden L. E., Siegel R. E. Neurotrophic action of VIP on spinal cord cultures. Peptides. 1985;6 (Suppl 2):35–39. doi: 10.1016/0196-9781(85)90132-9. [DOI] [PubMed] [Google Scholar]
  3. Brenneman D. E., Eiden L. E. Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1159–1162. doi: 10.1073/pnas.83.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenneman D. E., Fitzgerald S., Nelson P. G. Interaction between trophic action and electrical activity in spinal cord cultures. Brain Res. 1984 Aug;317(2):211–217. doi: 10.1016/0165-3806(84)90098-1. [DOI] [PubMed] [Google Scholar]
  5. Brenneman D. E., Hill J. M., Glazner G. W., Gozes I., Phillips T. W. Interleukin-1 alpha and vasoactive intestinal peptide: enigmatic regulation of neuronal survival. Int J Dev Neurosci. 1995 Jun-Jul;13(3-4):187–200. doi: 10.1016/0736-5748(95)00014-8. [DOI] [PubMed] [Google Scholar]
  6. Brenneman D. E., McCune S. K., Gozes I. Acquired immune deficiency syndrome and the developing nervous system. Int Rev Neurobiol. 1990;32:305–353. doi: 10.1016/s0074-7742(08)60587-5. [DOI] [PubMed] [Google Scholar]
  7. Brenneman D. E., Neale E. A., Foster G. A., d'Autremont S. W., Westbrook G. L. Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide. J Cell Biol. 1987 Jun;104(6):1603–1610. doi: 10.1083/jcb.104.6.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brenneman D. E., Neale E. A., Habig W. H., Bowers L. M., Nelson P. G. Developmental and neurochemical specificity of neuronal deficits produced by electrical impulse blockade in dissociated spinal cord cultures. Brain Res. 1983 Jul;285(1):13–27. doi: 10.1016/0165-3806(83)90104-9. [DOI] [PubMed] [Google Scholar]
  9. Brenneman D. E., Nicol T., Warren D., Bowers L. M. Vasoactive intestinal peptide: a neurotrophic releasing agent and an astroglial mitogen. J Neurosci Res. 1990 Mar;25(3):386–394. doi: 10.1002/jnr.490250316. [DOI] [PubMed] [Google Scholar]
  10. Brenneman D. E., Schultzberg M., Bartfai T., Gozes I. Cytokine regulation of neuronal survival. J Neurochem. 1992 Feb;58(2):454–460. doi: 10.1111/j.1471-4159.1992.tb09743.x. [DOI] [PubMed] [Google Scholar]
  11. Brenneman D. E., Westbrook G. L., Fitzgerald S. P., Ennist D. L., Elkins K. L., Ruff M. R., Pert C. B. Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature. 1988 Oct 13;335(6191):639–642. doi: 10.1038/335639a0. [DOI] [PubMed] [Google Scholar]
  12. Brorson J. R., Bindokas V. P., Iwama T., Marcuccilli C. J., Chisholm J. C., Miller R. J. The Ca2+ influx induced by beta-amyloid peptide 25-35 in cultured hippocampal neurons results from network excitation. J Neurobiol. 1995 Mar;26(3):325–338. doi: 10.1002/neu.480260305. [DOI] [PubMed] [Google Scholar]
  13. Brumback R. A., Leech R. W. Alzheimer's disease: pathophysiology and the hope for therapy. J Okla State Med Assoc. 1994 Mar;87(3):103–111. [PubMed] [Google Scholar]
  14. Carette B., Poulain P., Delacourte A. Electrophysiological effects of 25-35 amyloid-beta-protein on guinea-pig lateral septal neurons. Neurosci Lett. 1993 Mar 5;151(1):111–114. doi: 10.1016/0304-3940(93)90059-t. [DOI] [PubMed] [Google Scholar]
  15. Cavanagh A. C., Morton H. The purification of early-pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur J Biochem. 1994 Jun 1;222(2):551–560. doi: 10.1111/j.1432-1033.1994.tb18897.x. [DOI] [PubMed] [Google Scholar]
  16. Dreyer E. B., Kaiser P. K., Offermann J. T., Lipton S. A. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science. 1990 Apr 20;248(4953):364–367. doi: 10.1126/science.2326646. [DOI] [PubMed] [Google Scholar]
  17. Everall I. P., Luthert P. J., Lantos P. L. Neuronal loss in the frontal cortex in HIV infection. Lancet. 1991 May 11;337(8750):1119–1121. doi: 10.1016/0140-6736(91)92786-2. [DOI] [PubMed] [Google Scholar]
  18. Gozes I., Bardea A., Reshef A., Zamostiano R., Zhukovsky S., Rubinraut S., Fridkin M., Brenneman D. E. Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):427–432. doi: 10.1073/pnas.93.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gozes I., Brenneman D. E. VIP: molecular biology and neurobiological function. Mol Neurobiol. 1989 Winter;3(4):201–236. doi: 10.1007/BF02740606. [DOI] [PubMed] [Google Scholar]
  20. Gozes I., Lilling G., Glazer R., Ticher A., Ashkenazi I. E., Davidson A., Rubinraut S., Fridkin M., Brenneman D. E. Superactive lipophilic peptides discriminate multiple vasoactive intestinal peptide receptors. J Pharmacol Exp Ther. 1995 Apr;273(1):161–167. [PubMed] [Google Scholar]
  21. Gozes I., McCune S. K., Jacobson L., Warren D., Moody T. W., Fridkin M., Brenneman D. E. An antagonist to vasoactive intestinal peptide affects cellular functions in the central nervous system. J Pharmacol Exp Ther. 1991 Jun;257(3):959–966. [PubMed] [Google Scholar]
  22. Gozes I., Reshef A., Salah D., Rubinraut S., Fridkin M. Stearyl-norleucine-vasoactive intestinal peptide (VIP): a novel VIP analog for noninvasive impotence treatment. Endocrinology. 1994 May;134(5):2121–2125. doi: 10.1210/endo.134.5.8156912. [DOI] [PubMed] [Google Scholar]
  23. Harrison P. J., Procter A. W., Exworthy T., Roberts G. W., Najlerahim A., Barton A. J., Pearson R. C. Heat shock protein (hsx70) mRNA expression in human brain: effects of neurodegenerative disease and agonal state. Neuropathol Appl Neurobiol. 1993 Feb;19(1):10–21. doi: 10.1111/j.1365-2990.1993.tb00400.x. [DOI] [PubMed] [Google Scholar]
  24. Henderson C. E., Camu W., Mettling C., Gouin A., Poulsen K., Karihaloo M., Rullamas J., Evans T., McMahon S. B., Armanini M. P. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature. 1993 May 20;363(6426):266–270. doi: 10.1038/363266a0. [DOI] [PubMed] [Google Scholar]
  25. Hightower L. E., Guidon P. T., Jr Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol. 1989 Feb;138(2):257–266. doi: 10.1002/jcp.1041380206. [DOI] [PubMed] [Google Scholar]
  26. Hill J. M., Mervis R. F., Avidor R., Moody T. W., Brenneman D. E. HIV envelope protein-induced neuronal damage and retardation of behavioral development in rat neonates. Brain Res. 1993 Feb 19;603(2):222–233. doi: 10.1016/0006-8993(93)91241-j. [DOI] [PubMed] [Google Scholar]
  27. Ishii D. N., Glazner G. W., Pu S. F. Role of insulin-like growth factors in peripheral nerve regeneration. Pharmacol Ther. 1994 Apr-May;62(1-2):125–144. doi: 10.1016/0163-7258(94)90007-8. [DOI] [PubMed] [Google Scholar]
  28. Kowall N. W., Beal M. F., Busciglio J., Duffy L. K., Yankner B. A. An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7247–7251. doi: 10.1073/pnas.88.16.7247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Lee R. K., Wurtman R. J., Cox A. J., Nitsch R. M. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):8083–8087. doi: 10.1073/pnas.92.17.8083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Leibrock J., Lottspeich F., Hohn A., Hofer M., Hengerer B., Masiakowski P., Thoenen H., Barde Y. A. Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 1989 Sep 14;341(6238):149–152. doi: 10.1038/341149a0. [DOI] [PubMed] [Google Scholar]
  32. Letourneur F., Klausner R. D. A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell. 1992 Jun 26;69(7):1143–1157. doi: 10.1016/0092-8674(92)90636-q. [DOI] [PubMed] [Google Scholar]
  33. Levi-Montalcini R. Recent studies on the NGF-target cells interaction. Differentiation. 1979;13(1):51–53. doi: 10.1111/j.1432-0436.1979.tb01618.x. [DOI] [PubMed] [Google Scholar]
  34. Lin L. F., Doherty D. H., Lile J. D., Bektesh S., Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993 May 21;260(5111):1130–1132. doi: 10.1126/science.8493557. [DOI] [PubMed] [Google Scholar]
  35. Lin L. F., Mismer D., Lile J. D., Armes L. G., Butler E. T., 3rd, Vannice J. L., Collins F. Purification, cloning, and expression of ciliary neurotrophic factor (CNTF). Science. 1989 Nov 24;246(4933):1023–1025. doi: 10.1126/science.2587985. [DOI] [PubMed] [Google Scholar]
  36. Lin Y. Z., Yao S. Y., Veach R. A., Torgerson T. R., Hawiger J. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem. 1995 Jun 16;270(24):14255–14258. doi: 10.1074/jbc.270.24.14255. [DOI] [PubMed] [Google Scholar]
  37. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  38. Lipton S. A., Sucher N. J., Kaiser P. K., Dreyer E. B. Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron. 1991 Jul;7(1):111–118. doi: 10.1016/0896-6273(91)90079-f. [DOI] [PubMed] [Google Scholar]
  39. Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., Rydel R. E. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci. 1992 Feb;12(2):376–389. doi: 10.1523/JNEUROSCI.12-02-00376.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. McCarthy K. D., Partlow L. M. Preparation of pure neuronal and non-neuronal cultures from embryonic chick sympathetic ganglia: a new method based on both differential cell adhesiveness and the formation of homotypic neuronal aggregates. Brain Res. 1976 Sep 24;114(3):391–414. doi: 10.1016/0006-8993(76)90962-8. [DOI] [PubMed] [Google Scholar]
  41. McManaman J. L., Crawford F. G., Stewart S. S., Appel S. H. Purification of a skeletal muscle polypeptide which stimulates choline acetyltransferase activity in cultured spinal cord neurons. J Biol Chem. 1988 Apr 25;263(12):5890–5897. [PubMed] [Google Scholar]
  42. Mutt V. Vasoactive intestinal polypeptide and related peptides. Isolation and chemistry. Ann N Y Acad Sci. 1988;527:1–19. doi: 10.1111/j.1749-6632.1988.tb26968.x. [DOI] [PubMed] [Google Scholar]
  43. Nordberg A. Effect of long-term treatment with tacrine (THA) in Alzheimer's disease as visualized by PET. Acta Neurol Scand Suppl. 1993;149:62–65. doi: 10.1111/j.1600-0404.1993.tb04259.x. [DOI] [PubMed] [Google Scholar]
  44. Nordberg A., Lilja A., Lundqvist H., Hartvig P., Amberla K., Viitanen M., Warpman U., Johansson M., Hellström-Lindahl E., Bjurling P. Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging. 1992 Nov-Dec;13(6):747–758. doi: 10.1016/0197-4580(92)90099-j. [DOI] [PubMed] [Google Scholar]
  45. Patterson P. H. The emerging neuropoietic cytokine family: first CDF/LIF, CNTF and IL-6; next ONC, MGF, GCSF? Curr Opin Neurobiol. 1992 Feb;2(1):94–97. doi: 10.1016/0959-4388(92)90169-l. [DOI] [PubMed] [Google Scholar]
  46. Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., Cotman C. W. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci. 1993 Apr;13(4):1676–1687. doi: 10.1523/JNEUROSCI.13-04-01676.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Prabhakar S., Kurien E., Gupta R. S., Zielinski S., Freedman M. S. Heat shock protein immunoreactivity in CSF: correlation with oligoclonal banding and demyelinating disease. Neurology. 1994 Sep;44(9):1644–1648. doi: 10.1212/wnl.44.9.1644. [DOI] [PubMed] [Google Scholar]
  48. Said S. I. VIP and messenger plasticity. Trends Neurosci. 1994 Aug;17(8):339–339. doi: 10.1016/0166-2236(94)90176-7. [DOI] [PubMed] [Google Scholar]
  49. Schmechel D. E., Saunders A. M., Strittmatter W. J., Crain B. J., Hulette C. M., Joo S. H., Pericak-Vance M. A., Goldgaber D., Roses A. D. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9649–9653. doi: 10.1073/pnas.90.20.9649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schmechel D., Marangos P. J., Zis A. P., Brightman M., Goodwin F. K. Brain endolases as specific markers of neuronal and glial cells. Science. 1978 Jan 20;199(4326):313–315. doi: 10.1126/science.339349. [DOI] [PubMed] [Google Scholar]
  51. Schneider J., Kaaden O., Copeland T. D., Oroszlan S., Hunsmann G. Shedding and interspecies type sero-reactivity of the envelope glycopolypeptide gp120 of the human immunodeficiency virus. J Gen Virol. 1986 Nov;67(Pt 11):2533–2538. doi: 10.1099/0022-1317-67-11-2533. [DOI] [PubMed] [Google Scholar]
  52. Selkoe D. J. Physiological production of the beta-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci. 1993 Oct;16(10):403–409. doi: 10.1016/0166-2236(93)90008-a. [DOI] [PubMed] [Google Scholar]
  53. Shapira J. Research trends in Alzheimer's disease. J Gerontol Nurs. 1994 Apr;20(4):4–9. doi: 10.3928/0098-9134-19940401-04. [DOI] [PubMed] [Google Scholar]
  54. Uney J. B., Kew J. N., Staley K., Tyers P., Sofroniew M. V. Transfection-mediated expression of human Hsp70i protects rat dorsal root ganglian neurones and glia from severe heat stress. FEBS Lett. 1993 Nov 22;334(3):313–316. doi: 10.1016/0014-5793(93)80701-u. [DOI] [PubMed] [Google Scholar]
  55. Valerio A., Alberici A., Paterlini M., Grilli M., Galli P., Pizzi M., Memo M., Spano P. Opposing regulation of amyloid precursor protein by ionotropic and metabotropic glutamate receptors. Neuroreport. 1995 Jun 19;6(9):1317–1321. doi: 10.1097/00001756-199506090-00022. [DOI] [PubMed] [Google Scholar]
  56. Venner T. J., Gupta R. S. Nucleotide sequence of rat hsp60 (chaperonin, GroEL homolog) cDNA. Nucleic Acids Res. 1990 Sep 11;18(17):5309–5309. doi: 10.1093/nar/18.17.5309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Walicke P. A., Baird A. Internalization and processing of basic fibroblast growth factor by neurons and astrocytes. J Neurosci. 1991 Jul;11(7):2249–2258. doi: 10.1523/JNEUROSCI.11-07-02249.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zeilstra-Ryalls J., Fayet O., Georgopoulos C. The universally conserved GroE (Hsp60) chaperonins. Annu Rev Microbiol. 1991;45:301–325. doi: 10.1146/annurev.mi.45.100191.001505. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES