Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 15;97(10):2342–2350. doi: 10.1172/JCI118677

The relationship between the fibrinogen D domain self-association/cross-linking site (gammaXL) and the fibrinogen Dusart abnormality (Aalpha R554C-albumin): clues to thrombophilia in the "Dusart syndrome".

M W Mosesson 1, K R Siebenlist 1, J f Hainfeld 1, J S Wall 1, J Soria 1, C Soria 1, J P Caen 1
PMCID: PMC507315  PMID: 8636415

Abstract

Cross-linking of fibrinogen at its COOH-terminal gamma chain cross-linking site occurs in the presence of factor XIIIa due to self-association at a constitutive D domain site ("gammaXL"). We investigated the contribution of COOH-terminal regions of fibrinogen Aalpha chains to the gammaXL site by comparing the gamma chain cross-linking rate of intact fibrinogen (fraction I-2) with that of plasma fraction I-9, plasmic fraction I-9D, and plasmic fragment D1, which lack COOH-terminal Aalpha chain regions comprising approximately 100, approximately 390, and 413 residues, respectively. The cross-linking rates were I-2 > I-9 > 1-9D = D1, and indicated that the terminal 100 or more Aalpha chain residues enhance gammaXL site association. Fibrinogen Dusart, whose structural abnormality is in the COOH-terminal "alphaC" region of its Aalpha chain (Aalpha R554C-albumin), is associated with thrombophilia ("Dusart Syndrome"), and is characterized functionally by defective fibrin polymerization and clot structure, and reduced plasminogen binding and tPA-induced fibrinolysis. In the presence of XIIIa, the Dusart fibrinogen gamma chain cross-linking rate was about twice that of normal, but was normalized in proteolytic fibrinogen derivatives lacking the Aalpha chain abnormality, as was reduced plasminogen binding. Electron microscopy showed that albumin-bound Dusart fibrinogen "alphaC" regions were located in the vicinity of D domains, rather than at their expected tethered location near the fibrinogen E domain. In addition, there was considerable fibrinogen aggregation that was attributable to increased intermolecular COOH-terminal Aalpha chain associations promoted by untethered Dusart fibrinogen aC domains. We conclude that enhanced Dusart fibrinogen self-assembly is mediated through its abnormal alphaC domains, leads to increased gammaXL self-association and gamma chain cross-linking potential, and contributes to the thrombophilia that characterizes the "Dusart Syndrome."

Full Text

The Full Text of this article is available as a PDF (441.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blombäck B., Hessel B., Hogg D., Therkildsen L. A two-step fibrinogen--fibrin transition in blood coagulation. Nature. 1978 Oct 12;275(5680):501–505. doi: 10.1038/275501a0. [DOI] [PubMed] [Google Scholar]
  2. Budzynski A. Z., Olexa S. A., Pandya B. V. Fibrin polymerization sites in fibrinogen and fibrin fragments. Ann N Y Acad Sci. 1983 Jun 27;408:301–314. doi: 10.1111/j.1749-6632.1983.tb23253.x. [DOI] [PubMed] [Google Scholar]
  3. Carr M. E., Gabriel D. A. The effect of dextran 70 on the structure of plasma-derived fibrin gels. J Lab Clin Med. 1980 Dec;96(6):985–993. [PubMed] [Google Scholar]
  4. Carr M. E., Jr, Alving B. M. Effect of fibrin structure on plasmin-mediated dissolution of plasma clots. Blood Coagul Fibrinolysis. 1995 Sep;6(6):567–573. doi: 10.1097/00001721-199509000-00011. [DOI] [PubMed] [Google Scholar]
  5. Collet J. P., Soria J., Mirshahi M., Hirsch M., Dagonnet F. B., Caen J., Soria C. Dusart syndrome: a new concept of the relationship between fibrin clot architecture and fibrin clot degradability: hypofibrinolysis related to an abnormal clot structure. Blood. 1993 Oct 15;82(8):2462–2469. [PubMed] [Google Scholar]
  6. Dhall T. Z., Bryce W. A., Dhall D. P. Effects of dextran on the molecular structure and tensile behaviour of human fibrin. Thromb Haemost. 1976 Jun 30;35(3):737–745. [PubMed] [Google Scholar]
  7. Doolittle R. F., Cassman K. G., Cottrell B. A., Friezner S. J., Takagi T. Amino acid sequence studies on the alpha chain of human fibrinogen. Covalent structure of the alpha-chain portion of fragment D. Biochemistry. 1977 Apr 19;16(8):1710–1715. doi: 10.1021/bi00627a029. [DOI] [PubMed] [Google Scholar]
  8. Gabriel D. A., Muga K., Boothroyd E. M. The effect of fibrin structure on fibrinolysis. J Biol Chem. 1992 Dec 5;267(34):24259–24263. [PubMed] [Google Scholar]
  9. Gorkun O. V., Veklich Y. I., Medved L. V., Henschen A. H., Weisel J. W. Role of the alpha C domains of fibrin in clot formation. Biochemistry. 1994 Jun 7;33(22):6986–6997. doi: 10.1021/bi00188a031. [DOI] [PubMed] [Google Scholar]
  10. Hasegawa N., Sasaki S. Location of the binding site "b" for lateral polymerization of fibrin. Thromb Res. 1990 Jan 15;57(2):183–195. doi: 10.1016/0049-3848(90)90318-7. [DOI] [PubMed] [Google Scholar]
  11. Haverkate F., Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb Haemost. 1995 Jan;73(1):151–161. [PubMed] [Google Scholar]
  12. KAZAL L. A., AMSEL S., MILLER O. P., TOCANTINS L. M. THE PREPARATION AND SOME PROPERTIES OF FIBRINOGEN PRECIPITATED FROM HUMAN PLASMA BY GLYCINE. Proc Soc Exp Biol Med. 1963 Aug-Sep;113:989–994. doi: 10.3181/00379727-113-28553. [DOI] [PubMed] [Google Scholar]
  13. Kanaide H., Shainoff J. R. Cross-linking of fibrinogen and fibrin by fibrin-stablizing factor (factor XIIIa). J Lab Clin Med. 1975 Apr;85(4):574–597. [PubMed] [Google Scholar]
  14. Kirschbaum N. E., Mosesson M. W., Amrani D. L. Characterization of the gamma chain platelet binding site on fibrinogen fragment D. Blood. 1992 May 15;79(10):2643–2648. [PubMed] [Google Scholar]
  15. Koopman J., Haverkate F., Grimbergen J., Lord S. T., Mosesson M. W., DiOrio J. P., Siebenlist K. S., Legrand C., Soria J., Soria C. Molecular basis for fibrinogen Dusart (A alpha 554 Arg-->Cys) and its association with abnormal fibrin polymerization and thrombophilia. J Clin Invest. 1993 Apr;91(4):1637–1643. doi: 10.1172/JCI116371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOEWY A. G., DUNATHAN K., KRIEL R., WOLFINGER H. L., Jr Fibrinase. I. Purification of substrate and enzyme. J Biol Chem. 1961 Oct;236:2625–2633. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lijnen H. R., Soria J., Soria C., Collen D., Caen J. P. Dysfibrinogenemia (fibrinogen Dusard) associated with impaired fibrin-enhanced plasminogen activation. Thromb Haemost. 1984 Feb 28;51(1):108–109. [PubMed] [Google Scholar]
  19. MOSESSON M. W., FINLAYSON J. S. SUBFRACTIONS OF HUMAN FIBRINOGEN; PREPARATION AND ANALYSIS. J Lab Clin Med. 1963 Oct;62:663–674. [PubMed] [Google Scholar]
  20. Marder V. J., Budzyński A. Z., James H. L. High molecular weight derivatives of human fibrinogen produced by plasmin. 3. Their NH2-terminal amino acids and comparison with the "NH2-terminal disulfide knot". J Biol Chem. 1972 Aug 10;247(15):4775–4781. [PubMed] [Google Scholar]
  21. McFarlane A. S. IN VIVO BEHAVIOR OF I-FIBRINOGEN. J Clin Invest. 1963 Mar;42(3):346–361. doi: 10.1172/JCI104721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mosesson M. W., Alkjaersig N., Sweet B., Sherry S. Human fibrinogen of relatively high solubility. Comparative biophysical, biochemical, and biological studies with fibrinogen of lower solubility. Biochemistry. 1967 Oct;6(10):3279–3287. doi: 10.1021/bi00862a038. [DOI] [PubMed] [Google Scholar]
  23. Mosesson M. W., DiOrio J. P., Müller M. F., Shainoff J. R., Siebenlist K. R., Amrani D. L., Homandberg G. A., Soria J., Soria C., Samama M. Studies on the ultrastructure of fibrin lacking fibrinopeptide B (beta-fibrin). Blood. 1987 Apr;69(4):1073–1081. [PubMed] [Google Scholar]
  24. Mosesson M. W., DiOrio J. P., Siebenlist K. R., Wall J. S., Hainfeld J. F. Evidence for a second type of fibril branch point in fibrin polymer networks, the trimolecular junction. Blood. 1993 Sep 1;82(5):1517–1521. [PubMed] [Google Scholar]
  25. Mosesson M. W., Finlayson J. S., Galanakis D. K. The essential covalent structure of human fibrinogen evinced by analysis of derivatives formed during plasmic hydrolysis. J Biol Chem. 1973 Nov 25;248(22):7913–7929. [PubMed] [Google Scholar]
  26. Mosesson M. W., Finlayson J. S., Umfleet R. A., Galanakis D. Human fibrinogen heterogeneities. I. Structural and related studies of plasma fibrinogens which are high solubility catabolic intermediates. J Biol Chem. 1972 Aug 25;247(16):5210–5219. [PubMed] [Google Scholar]
  27. Mosesson M. W., Galanakis D. K., Finlayson J. S. Comparison of human plasma fibrinogen subfractions and early plasmic fibrinogen derivatives. J Biol Chem. 1974 Jul 25;249(14):4656–4664. [PubMed] [Google Scholar]
  28. Mosesson M. W., Hainfeld J., Wall J., Haschemeyer R. H. Identification and mass analysis of human fibrinogen molecules and their domains by scanning transmission electron microscopy. J Mol Biol. 1981 Dec 15;153(3):695–718. doi: 10.1016/0022-2836(81)90414-9. [DOI] [PubMed] [Google Scholar]
  29. Mosesson M. W., Sherry S. The preparation and properties of human fibrinogen of relatively high solubility. Biochemistry. 1966 Sep;5(9):2829–2835. doi: 10.1021/bi00873a008. [DOI] [PubMed] [Google Scholar]
  30. Mosesson M. W., Siebenlist K. R., Amrani D. L., DiOrio J. P. Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1113–1117. doi: 10.1073/pnas.86.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mosesson M. W., Siebenlist K. R., DiOrio J. P., Matsuda M., Hainfeld J. F., Wall J. S. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (gamma 275 Arg-->Cys). J Clin Invest. 1995 Aug;96(2):1053–1058. doi: 10.1172/JCI118091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mosesson M. W., Siebenlist K. R., Hainfeld J. F., Wall J. S. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils. J Struct Biol. 1995 Jul-Aug;115(1):88–101. doi: 10.1006/jsbi.1995.1033. [DOI] [PubMed] [Google Scholar]
  33. Robbins K. C., Summaria L. Plasminogen and plasmin. Methods Enzymol. 1976;45:257–273. doi: 10.1016/s0076-6879(76)45025-5. [DOI] [PubMed] [Google Scholar]
  34. Siebenlist K. R., Meh D. A., Wall J. S., Hainfeld J. F., Mosesson M. W. Orientation of the carboxy-terminal regions of fibrin gamma chain dimers determined from the crosslinked products formed in mixtures of fibrin, fragment D, and factor XIIIa. Thromb Haemost. 1995 Oct;74(4):1113–1119. [PubMed] [Google Scholar]
  35. Siebenlist K. R., Mosesson M. W., DiOrio J. P., Soria J., Soria C., Caen J. P. The polymerization of fibrinogen Dusart (A alpha 554 Arg-->Cys) after removal of carboxy terminal regions of the A alpha-chains. Blood Coagul Fibrinolysis. 1993 Feb;4(1):61–65. [PubMed] [Google Scholar]
  36. Soria J., Soria C., Caen P. A new type of congenital dysfibrinogenaemia with defective fibrin lysis--Dusard syndrome: possible relation to thrombosis. Br J Haematol. 1983 Apr;53(4):575–586. doi: 10.1111/j.1365-2141.1983.tb07309.x. [DOI] [PubMed] [Google Scholar]
  37. Veklich Y. I., Gorkun O. V., Medved L. V., Nieuwenhuizen W., Weisel J. W. Carboxyl-terminal portions of the alpha chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated alpha C fragments on polymerization. J Biol Chem. 1993 Jun 25;268(18):13577–13585. [PubMed] [Google Scholar]
  38. Wada Y., Lord S. T. A correlation between thrombotic disease and a specific fibrinogen abnormality (A alpha 554 Arg-->Cys) in two unrelated kindred, Dusart and Chapel Hill III. Blood. 1994 Dec 1;84(11):3709–3714. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES