Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 15;97(10):2377–2383. doi: 10.1172/JCI118681

In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia.

E Noiri 1, T Peresleni 1, F Miller 1, M S Goligorsky 1
PMCID: PMC507319  PMID: 8636419

Abstract

Gene products of all three distinct nitric oxide synthases are present in the mammalian kidney. This mosaic topography of nitric oxide synthase (NOS) isoforms probably reflects distinct functional role played by each enzyme. While nitric oxide (NO) is cytotoxic to isolated renal tubules, inhibition of NO production in vivo invariably results in the aggravation of renal dysfunction in various models of acute renal failure. We reasoned that the existing ambiguity on the role of nitric oxide in acute renal failure is in part due to the lack of selective NOS inhibitors. Phosphorothioated derivatives of antisense oligodeoxynucleotides targeting a conserved sequence within the open reading frame of the cDNA encoding the inducible NOS (iNOS) were designed to produce a selective knock-down of this enzyme. In vivo use of these antisense constructs attenuated acute renal failure in rats subjected to renal ischemia. This effect was due, at least in part, to the rescue of tubular epithelium from lethal injury. Application of antisense constructs did not affect endothelial NOS, as evidenced by a spared NO release after the infusion of bradykinin during in vivo monitoring with an NO-selective microelectrode. In conclusion, the data provide direct evidence for the cytotoxic effects of NO produced via iNOS in the course of ischemic acute renal failure, and offer a novel method to selectively prevent the induction of this enzyme.

Full Text

The Full Text of this article is available as a PDF (332.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agmon Y., Peleg H., Greenfeld Z., Rosen S., Brezis M. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest. 1994 Sep;94(3):1069–1075. doi: 10.1172/JCI117421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agrawal S., Temsamani J., Tang J. Y. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7595–7599. doi: 10.1073/pnas.88.17.7595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. Bachmann S., Bosse H. M., Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol. 1995 May;268(5 Pt 2):F885–F898. doi: 10.1152/ajprenal.1995.268.5.F885. [DOI] [PubMed] [Google Scholar]
  5. Bobadilla N. A., Tapia E., Franco M., López P., Mendoza S., García-Torres R., Alvarado J. A., Herrera-Acosta J. Role of nitric oxide in renal hemodynamic abnormalities of cyclosporin nephrotoxicity. Kidney Int. 1994 Sep;46(3):773–779. doi: 10.1038/ki.1994.332. [DOI] [PubMed] [Google Scholar]
  6. Conger J. D., Schultz M. F., Miller F., Robinette J. B. Responses to hemorrhagic arterial pressure reduction in different ischemic renal failure models. Kidney Int. 1994 Aug;46(2):318–323. doi: 10.1038/ki.1994.277. [DOI] [PubMed] [Google Scholar]
  7. Conger J., Robinette J., Villar A., Raij L., Shultz P. Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats. J Clin Invest. 1995 Jul;96(1):631–638. doi: 10.1172/JCI118078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cossum P. A., Sasmor H., Dellinger D., Truong L., Cummins L., Owens S. R., Markham P. M., Shea J. P., Crooke S. Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J Pharmacol Exp Ther. 1993 Dec;267(3):1181–1190. [PubMed] [Google Scholar]
  9. Dawson V. L., Dawson T. M., Uhl G. R., Snyder S. H. Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3256–3259. doi: 10.1073/pnas.90.8.3256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dean N. M., McKay R. Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11762–11766. doi: 10.1073/pnas.91.24.11762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dinerman J. L., Lowenstein C. J., Snyder S. H. Molecular mechanisms of nitric oxide regulation. Potential relevance to cardiovascular disease. Circ Res. 1993 Aug;73(2):217–222. doi: 10.1161/01.res.73.2.217. [DOI] [PubMed] [Google Scholar]
  12. Gold L. Oligonucleotides as research, diagnostic, and therapeutic agents. J Biol Chem. 1995 Jun 9;270(23):13581–13584. doi: 10.1074/jbc.270.23.13581. [DOI] [PubMed] [Google Scholar]
  13. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  14. Huang Z., Huang P. L., Panahian N., Dalkara T., Fishman M. C., Moskowitz M. A. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994 Sep 23;265(5180):1883–1885. doi: 10.1126/science.7522345. [DOI] [PubMed] [Google Scholar]
  15. Ji R. R., Zhang Q., Bedecs K., Arvidsson J., Zhang X., Xu X. J., Wiesenfeld-Hallin Z., Bartfai T., Hökfelt T. Galanin antisense oligonucleotides reduce galanin levels in dorsal root ganglia and induce autotomy in rats after axotomy. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12540–12543. doi: 10.1073/pnas.91.26.12540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kitajima I., Shinohara T., Bilakovics J., Brown D. A., Xu X., Nerenberg M. Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF-kappa B. Science. 1992 Dec 11;258(5089):1792–1795. doi: 10.1126/science.1299224. [DOI] [PubMed] [Google Scholar]
  17. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koprowski H., Zheng Y. M., Heber-Katz E., Fraser N., Rorke L., Fu Z. F., Hanlon C., Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3024–3027. doi: 10.1073/pnas.90.7.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lafon-Cazal M., Pietri S., Culcasi M., Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature. 1993 Aug 5;364(6437):535–537. doi: 10.1038/364535a0. [DOI] [PubMed] [Google Scholar]
  20. Lau K. S., Nakashima O., Aalund G. R., Hogarth L., Ujiie K., Yuen J., Star R. A. TNF-alpha and IFN-gamma induce expression of nitric oxide synthase in cultured rat medullary interstitial cells. Am J Physiol. 1995 Aug;269(2 Pt 2):F212–F217. doi: 10.1152/ajprenal.1995.269.2.F212. [DOI] [PubMed] [Google Scholar]
  21. Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
  22. Lyons C. R., Orloff G. J., Cunningham J. M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem. 1992 Mar 25;267(9):6370–6374. [PubMed] [Google Scholar]
  23. Malinski T., Bailey F., Zhang Z. G., Chopp M. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1993 May;13(3):355–358. doi: 10.1038/jcbfm.1993.48. [DOI] [PubMed] [Google Scholar]
  24. Marletta M. A. Approaches toward selective inhibition of nitric oxide synthase. J Med Chem. 1994 Jun 24;37(13):1899–1907. doi: 10.1021/jm00039a001. [DOI] [PubMed] [Google Scholar]
  25. Mohaupt M. G., Elzie J. L., Ahn K. Y., Clapp W. L., Wilcox C. S., Kone B. C. Differential expression and induction of mRNAs encoding two inducible nitric oxide synthases in rat kidney. Kidney Int. 1994 Sep;46(3):653–665. doi: 10.1038/ki.1994.318. [DOI] [PubMed] [Google Scholar]
  26. Nguyen T., Brunson D., Crespi C. L., Penman B. W., Wishnok J. S., Tannenbaum S. R. DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3030–3034. doi: 10.1073/pnas.89.7.3030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Noiri E., Gailit J., Sheth D., Magazine H., Gurrath M., Muller G., Kessler H., Goligorsky M. S. Cyclic RGD peptides ameliorate ischemic acute renal failure in rats. Kidney Int. 1994 Oct;46(4):1050–1058. doi: 10.1038/ki.1994.366. [DOI] [PubMed] [Google Scholar]
  28. Nunokawa Y., Ishida N., Tanaka S. Cloning of inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochem Biophys Res Commun. 1993 Feb 26;191(1):89–94. doi: 10.1006/bbrc.1993.1188. [DOI] [PubMed] [Google Scholar]
  29. Nussler A. K., Billiar T. R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993 Aug;54(2):171–178. [PubMed] [Google Scholar]
  30. Patel V. C., Yellon D. M., Singh K. J., Neild G. H., Woolfson R. G. Inhibition of nitric oxide limits infarct size in the in situ rabbit heart. Biochem Biophys Res Commun. 1993 Jul 15;194(1):234–238. doi: 10.1006/bbrc.1993.1809. [DOI] [PubMed] [Google Scholar]
  31. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  32. Rappaport J., Hanss B., Kopp J. B., Copeland T. D., Bruggeman L. A., Coffman T. M., Klotman P. E. Transport of phosphorothioate oligonucleotides in kidney: implications for molecular therapy. Kidney Int. 1995 May;47(5):1462–1469. doi: 10.1038/ki.1995.205. [DOI] [PubMed] [Google Scholar]
  33. Ratajczak M. Z., Kant J. A., Luger S. M., Hijiya N., Zhang J., Zon G., Gewirtz A. M. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11823–11827. doi: 10.1073/pnas.89.24.11823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Salvemini D., Seibert K., Masferrer J. L., Misko T. P., Currie M. G., Needleman P. Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation. J Clin Invest. 1994 May;93(5):1940–1947. doi: 10.1172/JCI117185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schwartz D., Blum M., Peer G., Wollman Y., Maree A., Serban I., Grosskopf I., Cabili S., Levo Y., Iaina A. Role of nitric oxide (EDRF) in radiocontrast acute renal failure in rats. Am J Physiol. 1994 Sep;267(3 Pt 2):F374–F379. doi: 10.1152/ajprenal.1994.267.3.F374. [DOI] [PubMed] [Google Scholar]
  36. Shi Y., Fard A., Galeo A., Hutchinson H. G., Vermani P., Dodge G. R., Hall D. J., Shaheen F., Zalewski A. Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury. Circulation. 1994 Aug;90(2):944–951. doi: 10.1161/01.cir.90.2.944. [DOI] [PubMed] [Google Scholar]
  37. Simons M., Edelman E. R., DeKeyser J. L., Langer R., Rosenberg R. D. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature. 1992 Sep 3;359(6390):67–70. doi: 10.1038/359067a0. [DOI] [PubMed] [Google Scholar]
  38. Tuszynski G. P., Murphy A. Spectrophotometric quantitation of anchorage-dependent cell numbers using the bicinchoninic acid protein assay reagent. Anal Biochem. 1990 Jan;184(1):189–191. doi: 10.1016/0003-2697(90)90032-5. [DOI] [PubMed] [Google Scholar]
  39. Wagner R. W. Gene inhibition using antisense oligodeoxynucleotides. Nature. 1994 Nov 24;372(6504):333–335. doi: 10.1038/372333a0. [DOI] [PubMed] [Google Scholar]
  40. Weinberg J. B., Granger D. L., Pisetsky D. S., Seldin M. F., Misukonis M. A., Mason S. N., Pippen A. M., Ruiz P., Wood E. R., Gilkeson G. S. The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J Exp Med. 1994 Feb 1;179(2):651–660. doi: 10.1084/jem.179.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. White C. R., Brock T. A., Chang L. Y., Crapo J., Briscoe P., Ku D., Bradley W. A., Gianturco S. H., Gore J., Freeman B. A. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1044–1048. doi: 10.1073/pnas.91.3.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yu L., Gengaro P. E., Niederberger M., Burke T. J., Schrier R. W. Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1691–1695. doi: 10.1073/pnas.91.5.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES