Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 15;97(10):2391–2398. doi: 10.1172/JCI118683

Preconditioning rabbit cardiomyocytes: role of pH, vacuolar proton ATPase, and apoptosis.

R A Gottlieb 1, D L Gruol 1, J Y Zhu 1, R L Engler 1
PMCID: PMC507321  PMID: 8636421

Abstract

Ischemic preconditioning signals through protein kinase C (PKC) to protect against myocardial infarction. This protection is characterized by diminished intracellular acidification. Acidification is also a feature of apoptosis, and several agents act to prevent apoptosis by preventing acidification through activation of ion channels and pumps to promote cytoplasmic alkalinization. We characterized metabolic inhibition, recovery, and preconditioning through a PKC-dependent pathway in cardiomyocytes isolated from adult rabbit hearts. Preconditioning reduced loss of viability assessed by morphology and reduced DNA nicking. Blockade of the vacuolar proton ATPase (VPATPase) prevented the effect of preconditioning to reduce metabolic inhibition-induced acidosis, loss of viability, and DNA nicking. The beneficial effect of Na+/H+ exchange inhibition, which is thought to be effective through reduced intracellular Na+ and Ca++, was also abrogated by VPATPase blockade, suggesting that acidification even in the absence of Na+/H+ exchange may lead to cell death. We conclude that a target of PKC in mediating preconditioning is activation of the VPATPase with resultant attenuation of intracellular acidification during metabolic inhibition. Inhibition of the "death protease," interleukin-1-beta converting enzyme or related enzymes, also protected against the injury that followed metabolic inhibition. This observation, coupled with the detection of DNA nicking in cells subjected to metabolic inhibition, suggests that apoptotic cell death may be preventable in this model of ischemia/reperfusion injury.

Full Text

The Full Text of this article is available as a PDF (208.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asimakis G. K., Inners-McBride K., Medellin G., Conti V. R. Ischemic preconditioning attenuates acidosis and postischemic dysfunction in isolated rat heart. Am J Physiol. 1992 Sep;263(3 Pt 2):H887–H894. doi: 10.1152/ajpheart.1992.263.3.H887. [DOI] [PubMed] [Google Scholar]
  2. Atsma D. E., Bastiaanse E. M., Jerzewski A., Van der Valk L. J., Van der Laarse A. Role of calcium-activated neutral protease (calpain) in cell death in cultured neonatal rat cardiomyocytes during metabolic inhibition. Circ Res. 1995 Jun;76(6):1071–1078. doi: 10.1161/01.res.76.6.1071. [DOI] [PubMed] [Google Scholar]
  3. Barry M. A., Eastman A. Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch Biochem Biophys. 1993 Jan;300(1):440–450. doi: 10.1006/abbi.1993.1060. [DOI] [PubMed] [Google Scholar]
  4. Barry M. A., Reynolds J. E., Eastman A. Etoposide-induced apoptosis in human HL-60 cells is associated with intracellular acidification. Cancer Res. 1993 May 15;53(10 Suppl):2349–2357. [PubMed] [Google Scholar]
  5. Bidani A., Brown S. E. ATP-dependent pHi recovery in lung macrophages: evidence for a plasma membrane H(+)-ATPase. Am J Physiol. 1990 Oct;259(4 Pt 1):C586–C598. doi: 10.1152/ajpcell.1990.259.4.C586. [DOI] [PubMed] [Google Scholar]
  6. Bidani A., Brown S. E., Heming T. A. pHi regulation in alveolar macrophages: relative roles of Na(+)-H+ antiport and H(+)-ATPase. Am J Physiol. 1994 Jun;266(6 Pt 1):L681–L688. doi: 10.1152/ajplung.1994.266.6.L681. [DOI] [PubMed] [Google Scholar]
  7. Bond J. M., Chacon E., Herman B., Lemasters J. J. Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes. Am J Physiol. 1993 Jul;265(1 Pt 1):C129–C137. doi: 10.1152/ajpcell.1993.265.1.C129. [DOI] [PubMed] [Google Scholar]
  8. Bronk S. F., Gores G. J. Efflux of protons from acidic vesicles contributes to cytosolic acidification of hepatocytes during ATP depletion. Hepatology. 1991 Oct;14(4 Pt 1):626–633. doi: 10.1016/0270-9139(91)90049-2. [DOI] [PubMed] [Google Scholar]
  9. Bugge E., Ytrehus K. Inhibition of sodium-hydrogen exchange reduces infarct size in the isolated rat heart--a protective additive to ischaemic preconditioning. Cardiovasc Res. 1995 Feb;29(2):269–274. [PubMed] [Google Scholar]
  10. Crider B. P., Xie X. S., Stone D. K. Bafilomycin inhibits proton flow through the H+ channel of vacuolar proton pumps. J Biol Chem. 1994 Jul 1;269(26):17379–17381. [PubMed] [Google Scholar]
  11. Cáceres-Cortés J., Rajotte D., Dumouchel J., Haddad P., Hoang T. Product of the steel locus suppresses apoptosis in hemopoietic cells. Comparison with pathways activated by granulocyte macrophage colony-stimulating factor. J Biol Chem. 1994 Apr 22;269(16):12084–12091. [PubMed] [Google Scholar]
  12. Downey J. M., Liu G. S., Thornton J. D. Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res. 1993 Jan;27(1):3–8. doi: 10.1093/cvr/27.1.3. [DOI] [PubMed] [Google Scholar]
  13. Dröse S., Bindseil K. U., Bowman E. J., Siebers A., Zeeck A., Altendorf K. Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry. 1993 Apr 20;32(15):3902–3906. doi: 10.1021/bi00066a008. [DOI] [PubMed] [Google Scholar]
  14. Fearnhead H. O., Dinsdale D., Cohen G. M. An interleukin-1 beta-converting enzyme-like protease is a common mediator of apoptosis in thymocytes. FEBS Lett. 1995 Nov 20;375(3):283–288. doi: 10.1016/0014-5793(95)01228-7. [DOI] [PubMed] [Google Scholar]
  15. Fleser A., Marshansky V., Duplain M., Noël J., Hoang A., Tejedor A., Vinay P. Cross-talk between the Na(+)-K(+)-ATPase and the H(+)-ATPase in proximal tubules in suspension. Ren Physiol Biochem. 1995 May-Jun;18(3):140–152. [PubMed] [Google Scholar]
  16. Folk J. E., Cole P. W. Transglutaminase: mechanistic features of the active site as determined by kinetic and inhibitor studies. Biochim Biophys Acta. 1966 Aug 10;122(2):244–264. doi: 10.1016/0926-6593(66)90066-x. [DOI] [PubMed] [Google Scholar]
  17. Gottlieb R. A., Burleson K. O., Kloner R. A., Babior B. M., Engler R. L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994 Oct;94(4):1621–1628. doi: 10.1172/JCI117504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gottlieb R. A., Giesing H. A., Zhu J. Y., Engler R. L., Babior B. M. Cell acidification in apoptosis: granulocyte colony-stimulating factor delays programmed cell death in neutrophils by up-regulating the vacuolar H(+)-ATPase. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5965–5968. doi: 10.1073/pnas.92.13.5965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gottlieb R. A., Nordberg J., Skowronski E., Babior B. M. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):654–658. doi: 10.1073/pnas.93.2.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Haigney M. C., Miyata H., Lakatta E. G., Stern M. D., Silverman H. S. Dependence of hypoxic cellular calcium loading on Na(+)-Ca2+ exchange. Circ Res. 1992 Sep;71(3):547–557. doi: 10.1161/01.res.71.3.547. [DOI] [PubMed] [Google Scholar]
  21. Halestrap A. P. Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J. 1991 Sep 15;278(Pt 3):715–719. doi: 10.1042/bj2780715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hayashi H., Arai K., Sato O., Shimaya A., Sai Y., Ohkuma S. Three types of membranous ATPase on rat liver lysosomes. Chem Pharm Bull (Tokyo) 1992 Oct;40(10):2783–2786. doi: 10.1248/cpb.40.2783. [DOI] [PubMed] [Google Scholar]
  23. Hendrikx M., Mubagwa K., Verdonck F., Overloop K., Van Hecke P., Vanstapel F., Van Lommel A., Verbeken E., Lauweryns J., Flameng W. New Na(+)-H+ exchange inhibitor HOE 694 improves postischemic function and high-energy phosphate resynthesis and reduces Ca2+ overload in isolated perfused rabbit heart. Circulation. 1994 Jun;89(6):2787–2798. doi: 10.1161/01.cir.89.6.2787. [DOI] [PubMed] [Google Scholar]
  24. Hori M., Kitakaze M., Sato H., Takashima S., Iwakura K., Inoue M., Kitabatake A., Kamada T. Staged reperfusion attenuates myocardial stunning in dogs. Role of transient acidosis during early reperfusion. Circulation. 1991 Nov;84(5):2135–2145. doi: 10.1161/01.cir.84.5.2135. [DOI] [PubMed] [Google Scholar]
  25. Ikonomidis J. S., Tumiati L. C., Weisel R. D., Mickle D. A., Li R. K. Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischaemia. Cardiovasc Res. 1994 Aug;28(8):1285–1291. doi: 10.1093/cvr/28.8.1285. [DOI] [PubMed] [Google Scholar]
  26. Imai S., Shi A. Y., Ishibashi T., Nakazawa M. Na+/H+ exchange is not operative under low-flow ischemic conditions. J Mol Cell Cardiol. 1991 Apr;23(4):505–517. doi: 10.1016/0022-2828(91)90174-k. [DOI] [PubMed] [Google Scholar]
  27. Kanfer J. N., Young O. M., Shapiro D., Brady R. O. The metabolism of sphingomyelin. I. Purification and properties of a sphingomyelin-cleaving enzyme from rat liver tissue. J Biol Chem. 1966 Mar 10;241(5):1081–1084. [PubMed] [Google Scholar]
  28. Kitakaze M., Hori M., Kamada T. Role of adenosine and its interaction with alpha adrenoceptor activity in ischaemic and reperfusion injury of the myocardium. Cardiovasc Res. 1993 Jan;27(1):18–27. doi: 10.1093/cvr/27.1.18. [DOI] [PubMed] [Google Scholar]
  29. Kitakaze M., Weisfeldt M. L., Marban E. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest. 1988 Sep;82(3):920–927. doi: 10.1172/JCI113699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lamb J. A., Allen P. G., Tuan B. Y., Janmey P. A. Modulation of gelsolin function. Activation at low pH overrides Ca2+ requirement. J Biol Chem. 1993 Apr 25;268(12):8999–9004. [PubMed] [Google Scholar]
  31. Lepier A., Azuma M., Harvey W. R., Wieczorek H. K+/H+ antiport in the tobacco hornworm midgut: the K(+)-transporting component of the K+ pump. J Exp Biol. 1994 Nov;196:361–373. doi: 10.1242/jeb.196.1.361. [DOI] [PubMed] [Google Scholar]
  32. Li J., Eastman A. Apoptosis in an interleukin-2-dependent cytotoxic T lymphocyte cell line is associated with intracellular acidification. Role of the Na(+)/H(+)-antiport. J Biol Chem. 1995 Feb 17;270(7):3203–3211. doi: 10.1074/jbc.270.7.3203. [DOI] [PubMed] [Google Scholar]
  33. Liu G. S., Richards S. C., Olsson R. A., Mullane K., Walsh R. S., Downey J. M. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovasc Res. 1994 Jul;28(7):1057–1061. doi: 10.1093/cvr/28.7.1057. [DOI] [PubMed] [Google Scholar]
  34. Martinez-Zaguilan R., Lynch R. M., Martinez G. M., Gillies R. J. Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol. 1993 Oct;265(4 Pt 1):C1015–C1029. doi: 10.1152/ajpcell.1993.265.4.C1015. [DOI] [PubMed] [Google Scholar]
  35. Mattsson J. P., Vänänen K., Wallmark B., Lorentzon P. Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases. Biochim Biophys Acta. 1991 Jun 18;1065(2):261–268. doi: 10.1016/0005-2736(91)90238-4. [DOI] [PubMed] [Google Scholar]
  36. Meng H. P., Maddaford T. G., Pierce G. N. Effect of amiloride and selected analogues on postischemic recovery of cardiac contractile function. Am J Physiol. 1993 Jun;264(6 Pt 2):H1831–H1835. doi: 10.1152/ajpheart.1993.264.6.H1831. [DOI] [PubMed] [Google Scholar]
  37. Meng H. P., Pierce G. N. Protective effects of 5-(N,N-dimethyl)amiloride on ischemia-reperfusion injury in hearts. Am J Physiol. 1990 May;258(5 Pt 2):H1615–H1619. doi: 10.1152/ajpheart.1990.258.5.H1615. [DOI] [PubMed] [Google Scholar]
  38. Murphy E., Perlman M., London R. E., Steenbergen C. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res. 1991 May;68(5):1250–1258. doi: 10.1161/01.res.68.5.1250. [DOI] [PubMed] [Google Scholar]
  39. Murry C. E., Richard V. J., Reimer K. A., Jennings R. B. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990 Apr;66(4):913–931. doi: 10.1161/01.res.66.4.913. [DOI] [PubMed] [Google Scholar]
  40. Nanda A., Gukovskaya A., Tseng J., Grinstein S. Activation of vacuolar-type proton pumps by protein kinase C. Role in neutrophil pH regulation. J Biol Chem. 1992 Nov 15;267(32):22740–22746. [PubMed] [Google Scholar]
  41. Navon G., Werrmann J. G., Maron R., Cohen S. M. 31P NMR and triple quantum filtered 23Na NMR studies of the effects of inhibition of Na+/H+ exchange on intracellular sodium and pH in working and ischemic hearts. Magn Reson Med. 1994 Nov;32(5):556–564. doi: 10.1002/mrm.1910320503. [DOI] [PubMed] [Google Scholar]
  42. Nicolli A., Petronilli V., Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochemistry. 1993 Apr 27;32(16):4461–4465. doi: 10.1021/bi00067a039. [DOI] [PubMed] [Google Scholar]
  43. Nishihara T., Akifusa S., Koseki T., Kato S., Muro M., Hanada N. Specific inhibitors of vacuolar type H(+)-ATPases induce apoptotic cell death. Biochem Biophys Res Commun. 1995 Jul 6;212(1):255–262. doi: 10.1006/bbrc.1995.1964. [DOI] [PubMed] [Google Scholar]
  44. Nordström T., Grinstein S., Brisseau G. F., Manolson M. F., Rotstein O. D. Protein kinase C activation accelerates proton extrusion by vacuolar-type H(+)-ATPases in murine peritoneal macrophages. FEBS Lett. 1994 Aug 15;350(1):82–86. doi: 10.1016/0014-5793(94)00738-1. [DOI] [PubMed] [Google Scholar]
  45. Novotny W. F., Chassande O., Baker M., Lazdunski M., Barbry P. Diamine oxidase is the amiloride-binding protein and is inhibited by amiloride analogues. J Biol Chem. 1994 Apr 1;269(13):9921–9925. [PubMed] [Google Scholar]
  46. Pierce G. N., Cole W. C., Liu K., Massaeli H., Maddaford T. G., Chen Y. J., McPherson C. D., Jain S., Sontag D. Modulation of cardiac performance by amiloride and several selected derivatives of amiloride. J Pharmacol Exp Ther. 1993 Jun;265(3):1280–1291. [PubMed] [Google Scholar]
  47. Pike M. M., Luo C. S., Clark M. D., Kirk K. A., Kitakaze M., Madden M. C., Cragoe E. J., Jr, Pohost G. M. NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na(+)-H+ exchange. Am J Physiol. 1993 Dec;265(6 Pt 2):H2017–H2026. doi: 10.1152/ajpheart.1993.265.6.H2017. [DOI] [PubMed] [Google Scholar]
  48. Presek P., Reuter C. Amiloride inhibits the protein tyrosine kinases associated with the cellular and the transforming src-gene products. Biochem Pharmacol. 1987 Sep 1;36(17):2821–2826. doi: 10.1016/0006-2952(87)90271-1. [DOI] [PubMed] [Google Scholar]
  49. Pérez-Sala D., Collado-Escobar D., Mollinedo F. Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J Biol Chem. 1995 Mar 17;270(11):6235–6242. doi: 10.1074/jbc.270.11.6235. [DOI] [PubMed] [Google Scholar]
  50. Rajotte D., Haddad P., Haman A., Cragoe E. J., Jr, Hoang T. Role of protein kinase C and the Na+/H+ antiporter in suppression of apoptosis by granulocyte macrophage colony-stimulating factor and interleukin-3. J Biol Chem. 1992 May 15;267(14):9980–9987. [PubMed] [Google Scholar]
  51. Rebollo A., Gómez J., Martínez de Aragón A., Lastres P., Silva A., Pérez-Sala D. Apoptosis induced by IL-2 withdrawal is associated with an intracellular acidification. Exp Cell Res. 1995 Jun;218(2):581–585. doi: 10.1006/excr.1995.1195. [DOI] [PubMed] [Google Scholar]
  52. Satoh H., Hayashi H., Katoh H., Terada H., Kobayashi A. Na+/H+ and Na+/Ca2+ exchange in regulation of [Na+]i and [Ca2+]i during metabolic inhibition. Am J Physiol. 1995 Mar;268(3 Pt 2):H1239–H1248. doi: 10.1152/ajpheart.1995.268.3.H1239. [DOI] [PubMed] [Google Scholar]
  53. Scholz W., Albus U., Counillon L., Gögelein H., Lang H. J., Linz W., Weichert A., Schölkens B. A. Protective effects of HOE642, a selective sodium-hydrogen exchange subtype 1 inhibitor, on cardiac ischaemia and reperfusion. Cardiovasc Res. 1995 Feb;29(2):260–268. [PubMed] [Google Scholar]
  54. Shanley P. F., Johnson G. C. Calcium and acidosis in renal hypoxia. Lab Invest. 1991 Sep;65(3):298–305. [PubMed] [Google Scholar]
  55. Shen H., Chan J., Kass I. S., Bergold P. J. Transient acidosis induces delayed neurotoxicity in cultured hippocampal slices. Neurosci Lett. 1995 Feb 9;185(2):115–118. doi: 10.1016/0304-3940(94)11238-e. [DOI] [PubMed] [Google Scholar]
  56. Silverman H. S., Stern M. D. Ionic basis of ischaemic cardiac injury: insights from cellular studies. Cardiovasc Res. 1994 May;28(5):581–597. doi: 10.1093/cvr/28.5.581. [DOI] [PubMed] [Google Scholar]
  57. Steenbergen C., Perlman M. E., London R. E., Murphy E. Mechanism of preconditioning. Ionic alterations. Circ Res. 1993 Jan;72(1):112–125. doi: 10.1161/01.res.72.1.112. [DOI] [PubMed] [Google Scholar]
  58. Swallow C. J., Grinstein S., Sudsbury R. A., Rotstein O. D. Relative roles of Na+/H+ exchange and vacuolar-type H+ ATPases in regulating cytoplasmic pH and function in murine peritoneal macrophages. J Cell Physiol. 1993 Dec;157(3):453–460. doi: 10.1002/jcp.1041570304. [DOI] [PubMed] [Google Scholar]
  59. Tanaka M., Ito H., Adachi S., Akimoto H., Nishikawa T., Kasajima T., Marumo F., Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res. 1994 Sep;75(3):426–433. doi: 10.1161/01.res.75.3.426. [DOI] [PubMed] [Google Scholar]
  60. Vanhaesebroeck B., Cragoe E. J., Jr, Pouysségur J., Beyaert R., Van Roy F., Fiers W. Cytotoxic activity of tumor necrosis factor is inhibited by amiloride derivatives without involvement of the Na+/H+ antiporter. FEBS Lett. 1990 Feb 26;261(2):319–322. doi: 10.1016/0014-5793(90)80581-3. [DOI] [PubMed] [Google Scholar]
  61. Vuorinen K., Ylitalo K., Peuhkurinen K., Raatikainen P., Ala-Rämi A., Hassinen I. E. Mechanisms of ischemic preconditioning in rat myocardium. Roles of adenosine, cellular energy state, and mitochondrial F1F0-ATPase. Circulation. 1995 Jun 1;91(11):2810–2818. doi: 10.1161/01.cir.91.11.2810. [DOI] [PubMed] [Google Scholar]
  62. Wolfe C. L., Sievers R. E., Visseren F. L., Donnelly T. J. Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment. Circulation. 1993 Mar;87(3):881–892. doi: 10.1161/01.cir.87.3.881. [DOI] [PubMed] [Google Scholar]
  63. Yao Z., Gross G. J. Acetylcholine mimics ischemic preconditioning via a glibenclamide-sensitive mechanism in dogs. Am J Physiol. 1993 Jun;264(6 Pt 2):H2221–H2225. doi: 10.1152/ajpheart.1993.264.6.H2221. [DOI] [PubMed] [Google Scholar]
  64. Yao Z., Gross G. J. Role of nitric oxide, muscarinic receptors, and the ATP-sensitive K+ channel in mediating the effects of acetylcholine to mimic preconditioning in dogs. Circ Res. 1993 Dec;73(6):1193–1201. doi: 10.1161/01.res.73.6.1193. [DOI] [PubMed] [Google Scholar]
  65. Yasutake M., Ibuki C., Hearse D. J., Avkiran M. Na+/H+ exchange and reperfusion arrhythmias: protection by intracoronary infusion of a novel inhibitor. Am J Physiol. 1994 Dec;267(6 Pt 2):H2430–H2440. doi: 10.1152/ajpheart.1994.267.6.H2430. [DOI] [PubMed] [Google Scholar]
  66. Yellon D. M., Alkhulaifi A. M., Pugsley W. B. Preconditioning the human myocardium. Lancet. 1993 Jul 31;342(8866):276–277. doi: 10.1016/0140-6736(93)91819-8. [DOI] [PubMed] [Google Scholar]
  67. Ytrehus K., Liu Y., Downey J. M. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol. 1994 Mar;266(3 Pt 2):H1145–H1152. doi: 10.1152/ajpheart.1994.266.3.H1145. [DOI] [PubMed] [Google Scholar]
  68. de Albuquerque C. P., Gerstenblith G., Weiss R. G. Importance of metabolic inhibition and cellular pH in mediating preconditioning contractile and metabolic effects in rat hearts. Circ Res. 1994 Jan;74(1):139–150. doi: 10.1161/01.res.74.1.139. [DOI] [PubMed] [Google Scholar]
  69. van Hardeveld C., Schouten V. J., Muller A., van der Meulen E. T., Elzinga G. Exposure of energy-depleted rat trabeculae to low pH improves contractile recovery: role of calcium. Am J Physiol. 1995 Apr;268(4 Pt 2):H1510–H1520. doi: 10.1152/ajpheart.1995.268.4.H1510. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES