Abstract
The regulation of liver apolipoprotein (apo) A-I gene expression by fibrates was studied in human apo A-I transgenic mice containing a human genomic DNA fragment driving apo A-I expression in liver. Treatment with fenofibrate (0.5% wt/wt) for 7 d increased plasma human apo A-I levels up to 750% and HDL-cholesterol levels up to 200% with a shift to larger particles. The increase in human apo A-I plasma levels was time and dose dependent and was already evident after 3 d at the highest dose (0.5% wt/wt) of fenofibrate. In contrast, plasma mouse apo A-I concentration was decreased after fenofibrate in nontransgenic mice. The increase in plasma human apo A-I levels after fenofibrate treatment was associated with a 97% increase in hepatic human apo A-I mRNA, whereas mouse apo A-I mRNA levels decreased to 51%. In nontransgenic mice, a similar down-regulation of hepatic apo A-I mRNA levels was observed. Nuclear run-on experiments demonstrated that the increase in human apo A-I and the decrease in mouse apo A-I gene expression after fenofibrate occurred at the transcriptional level. Since part of the effects of fibrates are mediated through the nuclear receptor PPAR (peroxisome proliferator-activated receptor), the expression of the acyl CoA oxidase (ACO) gene was measured as a control of PPAR activation. Both in transgenic and nontransgenic mice, fenofibrate induced ACO mRNA levels up to sixfold. When transgenic mice were treated with gemfibrozil (0.5% wt/wt) plasma human apo A-I and HDL-cholesterol levels increased 32 and 73%, respectively, above control levels. The weaker effect of this compound on human apo A-I and HDL-cholesterol levels correlated with a less pronounced impact on ACO mRNA levels (a threefold increase) suggesting that the level of induction of human apo A-I gene is related to the PPAR activating potency of the fibrate used. Treatment of human primary hepatocytes with fenofibric acid (500 microM) provoked an 83 and 50% increase in apo A-I secretion and mRNA levels, respectively, supporting that a direct action of fibrates on liver human apo A-I production leads to the observed increase in plasma apo A4 and HDL-cholesterol.
Full Text
The Full Text of this article is available as a PDF (290.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auwerx J. Regulation of gene expression by fatty acids and fibric acid derivatives: an integrative role for peroxisome proliferator activated receptors. The Belgian Endocrine Society Lecture 1992. Horm Res. 1992;38(5-6):269–277. doi: 10.1159/000182557. [DOI] [PubMed] [Google Scholar]
- Balfour J. A., McTavish D., Heel R. C. Fenofibrate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs. 1990 Aug;40(2):260–290. doi: 10.2165/00003495-199040020-00007. [DOI] [PubMed] [Google Scholar]
- Bard J. M., Parra H. J., Camare R., Luc G., Ziegler O., Dachet C., Bruckert E., Douste-Blazy P., Drouin P., Jacotot B. A multicenter comparison of the effects of simvastatin and fenofibrate therapy in severe primary hypercholesterolemia, with particular emphasis on lipoproteins defined by their apolipoprotein composition. Metabolism. 1992 May;41(5):498–503. doi: 10.1016/0026-0495(92)90208-r. [DOI] [PubMed] [Google Scholar]
- Berthou L., Saladin R., Yaqoob P., Branellec D., Calder P., Fruchart J. C., Denèfle P., Auwerx J., Staels B. Regulation of rat liver apolipoprotein A-I, apolipoprotein A-II and acyl-coenzyme A oxidase gene expression by fibrates and dietary fatty acids. Eur J Biochem. 1995 Aug 15;232(1):179–187. doi: 10.1111/j.1432-1033.1995.tb20797.x. [DOI] [PubMed] [Google Scholar]
- Blaauboer B. J., van Holsteijn C. W., Bleumink R., Mennes W. C., van Pelt F. N., Yap S. H., van Pelt J. F., van Iersel A. A., Timmerman A., Schmid B. P. The effect of beclobric acid and clofibric acid on peroxisomal beta-oxidation and peroxisome proliferation in primary cultures of rat, monkey and human hepatocytes. Biochem Pharmacol. 1990 Aug 1;40(3):521–528. doi: 10.1016/0006-2952(90)90551-u. [DOI] [PubMed] [Google Scholar]
- Breslow J. L. Lipoprotein metabolism and atherosclerosis susceptibility in transgenic mice. Curr Opin Lipidol. 1994 Jun;5(3):175–184. doi: 10.1097/00041433-199405030-00004. [DOI] [PubMed] [Google Scholar]
- Breslow J. L., Ross D., McPherson J., Williams H., Kurnit D., Nussbaum A. L., Karathanasis S. K., Zannis V. I. Isolation and characterization of cDNA clones for human apolipoprotein A-I. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6861–6865. doi: 10.1073/pnas.79.22.6861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breslow J. L. Transgenic mouse models of lipoprotein metabolism and atherosclerosis. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8314–8318. doi: 10.1073/pnas.90.18.8314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan J., Nakabayashi H., Wong N. C. HNF-4 increases activity of the rat Apo A1 gene. Nucleic Acids Res. 1993 Mar 11;21(5):1205–1211. doi: 10.1093/nar/21.5.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Dreyer C., Krey G., Keller H., Givel F., Helftenbein G., Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992 Mar 6;68(5):879–887. doi: 10.1016/0092-8674(92)90031-7. [DOI] [PubMed] [Google Scholar]
- Forte T. M., McCall M. R. The role of apolipoprotein A-I-containing lipoproteins in atherosclerosis. Curr Opin Lipidol. 1994 Oct;5(5):354–364. doi: 10.1097/00041433-199410000-00007. [DOI] [PubMed] [Google Scholar]
- Ge R., Rhee M., Malik S., Karathanasis S. K. Transcriptional repression of apolipoprotein AI gene expression by orphan receptor ARP-1. J Biol Chem. 1994 May 6;269(18):13185–13192. [PubMed] [Google Scholar]
- Gnasso A., Lehner B., Haberbosch W., Leiss O., von Bergmann K., Augustin J. Effect of gemfibrozil on lipids, apoproteins, and postheparin lipolytic activities in normolipidemic subjects. Metabolism. 1986 May;35(5):387–393. doi: 10.1016/0026-0495(86)90125-3. [DOI] [PubMed] [Google Scholar]
- Goldberg A. P., Applebaum-Bowden D. M., Bierman E. L., Hazzard W. R., Haas L. B., Sherrard D. J., Brunzell J. D., Huttunen J. K., Ehnholm C., Nikkila E. A. Increase in lipoprotein lipase during clofibrate treatment of hypertriglyceridemia in patients on hemodialysis. N Engl J Med. 1979 Nov 15;301(20):1073–1076. doi: 10.1056/NEJM197911153012001. [DOI] [PubMed] [Google Scholar]
- Gould A. L., Rossouw J. E., Santanello N. C., Heyse J. F., Furberg C. D. Cholesterol reduction yields clinical benefit. A new look at old data. Circulation. 1995 Apr 15;91(8):2274–2282. doi: 10.1161/01.cir.91.8.2274. [DOI] [PubMed] [Google Scholar]
- Hahn S. E., Goldberg D. M. Modulation of lipoprotein production in Hep G2 cells by fenofibrate and clofibrate. Biochem Pharmacol. 1992 Feb 4;43(3):625–633. doi: 10.1016/0006-2952(92)90586-8. [DOI] [PubMed] [Google Scholar]
- Harnish D. C., Malik S., Karathanasis S. K. Activation of apolipoprotein AI gene transcription by the liver-enriched factor HNF-3. J Biol Chem. 1994 Nov 11;269(45):28220–28226. [PubMed] [Google Scholar]
- Hayek T., Chajek-Shaul T., Walsh A., Azrolan N., Breslow J. L. Probucol decreases apolipoprotein A-I transport rate and increases high density lipoprotein cholesteryl ester fractional catabolic rate in control and human apolipoprotein A-I transgenic mice. Arterioscler Thromb. 1991 Sep-Oct;11(5):1295–1302. doi: 10.1161/01.atv.11.5.1295. [DOI] [PubMed] [Google Scholar]
- Hayek T., Ito Y., Azrolan N., Verdery R. B., Aalto-Setälä K., Walsh A., Breslow J. L. Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I. Presentation of a new animal model and mechanistic studies in human Apo A-I transgenic and control mice. J Clin Invest. 1993 Apr;91(4):1665–1671. doi: 10.1172/JCI116375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hertz R., Bishara-Shieban J., Bar-Tana J. Mode of action of peroxisome proliferators as hypolipidemic drugs. Suppression of apolipoprotein C-III. J Biol Chem. 1995 Jun 2;270(22):13470–13475. doi: 10.1074/jbc.270.22.13470. [DOI] [PubMed] [Google Scholar]
- Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990 Oct 18;347(6294):645–650. doi: 10.1038/347645a0. [DOI] [PubMed] [Google Scholar]
- Keller H., Dreyer C., Medin J., Mahfoudi A., Ozato K., Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2160–2164. doi: 10.1073/pnas.90.6.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozuka H., Yamada J., Horie S., Watanabe T., Suga T., Ikeda T. Characteristics of induction of peroxisomal fatty acid oxidation-related enzymes in rat liver by drugs. Relationships between structure and inducing activity. Biochem Pharmacol. 1991 Feb 15;41(4):617–623. doi: 10.1016/0006-2952(91)90635-i. [DOI] [PubMed] [Google Scholar]
- Krause B. R., Newton R. S. Apolipoprotein changes associated with the plasma lipid-regulating activity of gemfibrozil in cholesterol-fed rats. J Lipid Res. 1985 Aug;26(8):940–949. [PubMed] [Google Scholar]
- Krause B. R., Newton R. S. Gemfibrozil increases both apo A-I and apo E concentrations. Comparison to other lipid regulators in cholesterol-fed rats. Atherosclerosis. 1986 Jan;59(1):95–98. doi: 10.1016/0021-9150(86)90036-5. [DOI] [PubMed] [Google Scholar]
- Ladias J. A., Karathanasis S. K. Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science. 1991 Feb 1;251(4993):561–565. doi: 10.1126/science.1899293. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. S., Pineau T., Drago J., Lee E. J., Owens J. W., Kroetz D. L., Fernandez-Salguero P. M., Westphal H., Gonzalez F. J. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol. 1995 Jun;15(6):3012–3022. doi: 10.1128/mcb.15.6.3012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu A. C., Lawn R. M., Verstuyft J. G., Rubin E. M. Human apolipoprotein A-I prevents atherosclerosis associated with apolipoprotein[a] in transgenic mice. J Lipid Res. 1994 Dec;35(12):2263–2267. [PubMed] [Google Scholar]
- Lock E. A., Mitchell A. M., Elcombe C. R. Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu Rev Pharmacol Toxicol. 1989;29:145–163. doi: 10.1146/annurev.pa.29.040189.001045. [DOI] [PubMed] [Google Scholar]
- Malmendier C. L., Delcroix C. Effects of fenofibrate on high and low density lipoprotein metabolism in heterozygous familial hypercholesterolemia. Atherosclerosis. 1985 May;55(2):161–169. doi: 10.1016/0021-9150(85)90095-4. [DOI] [PubMed] [Google Scholar]
- Manninen V. Clinical results with gemfibrozil and background to the Helsinki Heart Study. Am J Cardiol. 1983 Aug 22;52(4):35B–38B. doi: 10.1016/0002-9149(83)90656-2. [DOI] [PubMed] [Google Scholar]
- Milton M. N., Elcombe C. R., Gibson G. G. On the mechanism of induction of microsomal cytochrome P450IVA1 and peroxisome proliferation in rat liver by clofibrate. Biochem Pharmacol. 1990 Dec 15;40(12):2727–2732. doi: 10.1016/0006-2952(90)90594-b. [DOI] [PubMed] [Google Scholar]
- Nevins J. R. Isolation and analysis of nuclear RNA. Methods Enzymol. 1987;152:234–241. doi: 10.1016/0076-6879(87)52025-0. [DOI] [PubMed] [Google Scholar]
- Olivier P., Plancke M. O., Marzin D., Clavey V., Sauzieres J., Fruchart J. C. Effects of fenofibrate, gemfibrozil and nicotinic acid on plasma lipoprotein levels in normal and hyperlipidemic mice. A proposed model for drug screening. Atherosclerosis. 1988 Mar;70(1-2):107–114. doi: 10.1016/0021-9150(88)90104-9. [DOI] [PubMed] [Google Scholar]
- Osumi T., Ozasa H., Hashimoto T. Molecular cloning of cDNA for rat acyl-CoA oxidase. J Biol Chem. 1984 Feb 25;259(4):2031–2034. [PubMed] [Google Scholar]
- Osumi T., Wen J. K., Hashimoto T. Two cis-acting regulatory sequences in the peroxisome proliferator-responsive enhancer region of rat acyl-CoA oxidase gene. Biochem Biophys Res Commun. 1991 Mar 29;175(3):866–871. doi: 10.1016/0006-291x(91)91645-s. [DOI] [PubMed] [Google Scholar]
- Papazafiri P., Ogami K., Ramji D. P., Nicosia A., Monaci P., Cladaras C., Zannis V. I. Promoter elements and factors involved in hepatic transcription of the human ApoA-I gene positive and negative regulators bind to overlapping sites. J Biol Chem. 1991 Mar 25;266(9):5790–5797. [PubMed] [Google Scholar]
- Petit D., Bonnefis M. T., Rey C., Infante R. Effects of ciprofibrate and fenofibrate on liver lipids and lipoprotein synthesis in normo- and hyperlipidemic rats. Atherosclerosis. 1988 Dec;74(3):215–225. doi: 10.1016/0021-9150(88)90240-7. [DOI] [PubMed] [Google Scholar]
- Plump A. S., Scott C. J., Breslow J. L. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9607–9611. doi: 10.1073/pnas.91.20.9607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puchois P., Kandoussi A., Fievet P., Fourrier J. L., Bertrand M., Koren E., Fruchart J. C. Apolipoprotein A-I containing lipoproteins in coronary artery disease. Atherosclerosis. 1987 Nov;68(1-2):35–40. doi: 10.1016/0021-9150(87)90091-8. [DOI] [PubMed] [Google Scholar]
- Pászty C., Maeda N., Verstuyft J., Rubin E. M. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest. 1994 Aug;94(2):899–903. doi: 10.1172/JCI117412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy J. K., Azarnoff D. L., Hignite C. E. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature. 1980 Jan 24;283(5745):397–398. doi: 10.1038/283397a0. [DOI] [PubMed] [Google Scholar]
- Reddy J. K., Goel S. K., Nemali M. R., Carrino J. J., Laffler T. G., Reddy M. K., Sperbeck S. J., Osumi T., Hashimoto T., Lalwani N. D. Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1747–1751. doi: 10.1073/pnas.83.6.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottman J. N., Widom R. L., Nadal-Ginard B., Mahdavi V., Karathanasis S. K. A retinoic acid-responsive element in the apolipoprotein AI gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol. 1991 Jul;11(7):3814–3820. doi: 10.1128/mcb.11.7.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin E. M., Ishida B. Y., Clift S. M., Krauss R. M. Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):434–438. doi: 10.1073/pnas.88.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin E. M., Krauss R. M., Spangler E. A., Verstuyft J. G., Clift S. M. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature. 1991 Sep 19;353(6341):265–267. doi: 10.1038/353265a0. [DOI] [PubMed] [Google Scholar]
- Schultz J. R., Verstuyft J. G., Gong E. L., Nichols A. V., Rubin E. M. Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Nature. 1993 Oct 21;365(6448):762–764. doi: 10.1038/365762a0. [DOI] [PubMed] [Google Scholar]
- Sirtori C. R., Franceschini G. Effects of fibrates on serum lipids and atherosclerosis. Pharmacol Ther. 1988;37(2):167–191. doi: 10.1016/0163-7258(88)90024-1. [DOI] [PubMed] [Google Scholar]
- Staels B., Auwerx J., Chan L., van Tol A., Rosseneu M., Verhoeven G. Influence of development, estrogens, and food intake on apolipoprotein A-I, A-II, and E mRNA in rat liver and intestine. J Lipid Res. 1989 Aug;30(8):1137–1145. [PubMed] [Google Scholar]
- Staels B., Auwerx J. Perturbation of developmental gene expression in rat liver by fibric acid derivatives: lipoprotein lipase and alpha-fetoprotein as models. Development. 1992 Aug;115(4):1035–1043. doi: 10.1242/dev.115.4.1035. [DOI] [PubMed] [Google Scholar]
- Staels B., Vu-Dac N., Kosykh V. A., Saladin R., Fruchart J. C., Dallongeville J., Auwerx J. Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates. J Clin Invest. 1995 Feb;95(2):705–712. doi: 10.1172/JCI117717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staels B., van Tol A., Andreu T., Auwerx J. Fibrates influence the expression of genes involved in lipoprotein metabolism in a tissue-selective manner in the rat. Arterioscler Thromb. 1992 Mar;12(3):286–294. doi: 10.1161/01.atv.12.3.286. [DOI] [PubMed] [Google Scholar]
- Tomaszewski K. E., Heindel S. W., Jenkins W. L., Melnick R. L. Induction of peroxisomal acyl CoA oxidase activity and lipid peroxidation in primary rat hepatocyte cultures. Toxicology. 1990 Dec 17;65(1-2):49–60. doi: 10.1016/0300-483x(90)90078-u. [DOI] [PubMed] [Google Scholar]
- Tugwood J. D., Issemann I., Anderson R. G., Bundell K. R., McPheat W. L., Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 1992 Feb;11(2):433–439. doi: 10.1002/j.1460-2075.1992.tb05072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uzan G., Frain M., Park I., Besmond C., Maessen G., Trépat J. S., Zakin M. M., Kahn A. Molecular cloning and sequence analysis of cDNA for human transferrin. Biochem Biophys Res Commun. 1984 Feb 29;119(1):273–281. doi: 10.1016/0006-291x(84)91648-6. [DOI] [PubMed] [Google Scholar]
- Voller A., Bidwell D. E., Bartlett A. Enzyme immunoassays in diagnostic medicine. Theory and practice. Bull World Health Organ. 1976;53(1):55–65. [PMC free article] [PubMed] [Google Scholar]
- Vu-Dac N., Schoonjans K., Kosykh V., Dallongeville J., Fruchart J. C., Staels B., Auwerx J. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest. 1995 Aug;96(2):741–750. doi: 10.1172/JCI118118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vu-Dac N., Schoonjans K., Laine B., Fruchart J. C., Auwerx J., Staels B. Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its response element. J Biol Chem. 1994 Dec 9;269(49):31012–31018. [PubMed] [Google Scholar]
- Walsh A., Ito Y., Breslow J. L. High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem. 1989 Apr 15;264(11):6488–6494. [PubMed] [Google Scholar]
- Widom R. L., Ladias J. A., Kouidou S., Karathanasis S. K. Synergistic interactions between transcription factors control expression of the apolipoprotein AI gene in liver cells. Mol Cell Biol. 1991 Feb;11(2):677–687. doi: 10.1128/mcb.11.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]