Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jun 1;97(11):2452–2468. doi: 10.1172/JCI118692

Elafin, a serine elastase inhibitor, attenuates post-cardiac transplant coronary arteriopathy and reduces myocardial necrosis in rabbits afer heterotopic cardiac transplantation.

B Cowan 1, O Baron 1, J Crack 1, C Coulber 1, G J Wilson 1, M Rabinovitch 1
PMCID: PMC507330  PMID: 8647937

Abstract

We have related experimentally induced post-cardiac transplant coronary arteriopathy to increased elastolytic activity, IL-1beta, fibronectin-mediated inflammatory and smooth muscle cell (SMC) migration, and SMC proliferation. Since our in vitro studies show that a serine elastase releases SMC mitogens and facilitates IL-lbeta induction of fibronectin, we hypothesized that administration in vivo of the specific serine elastase inhibitor, elafin, would decrease the post-cardiac transplant coronary arteriopathy. Cholesterol-fed rabbits underwent a heterotopic cardiac transplant without immunosuppression and received elafin (1.79 mg/kg per d continuous infusion after a 9 mg bolus, n = 6) or vehicle (n = 6). 1 wk later, hearts were harvested for morphometric, immunohistochemical, and biochemical analyses. A > 70% decrease in the total number of coronary arteries with intimal thickening in elafin-treated compared to control donor hearts (P < 0.002) was associated with reduced vascular elastolytic activity judged by fewer breaks in the internal elastic lamina (P < 0.03), less accumulation of immunoreactive fibronectin (P < 0.02), and reduced cell proliferation quantified by proliferating cell nuclear antigen (P < 0.0001). Despite myocardial lymphocytic infiltration, wet weight of elafin-treated donor hearts was reduced by 50% compared to untreated controls (P < 0.002) and associated with relative preservation of myocyte integrity, instead of extensive myocardial necrosis (P < 0.004). This protective effect correlated with decreased myocardial elastolytic activity (P < 0.0001) and inflammatory cell proliferation (P < 0.0001) and with an elafin-inhibitable elastase in lymphocytes. Serine elastase activity thus appears an important therapeutic target for post-cardiac transplant coronary arteriopathy and myocardial necrosis induced by rejection.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso D. R., Starek P. K., Minick C. R. Studies on the pathogenesis of atheroarteriosclerosis induced in rabbit cardiac allografts by the synergy of graft rejection and hypercholesterolemia. Am J Pathol. 1977 May;87(2):415–442. [PMC free article] [PubMed] [Google Scholar]
  2. Ardehali A., Billingsley A., Laks H., Drinkwater D. C., Jr, Sorensen T. J., Drake T. A. Experimental cardiac allograft vasculopathy in mice. J Heart Lung Transplant. 1993 Sep-Oct;12(5):730–735. [PubMed] [Google Scholar]
  3. Bieber C. P., Hunt S. A., Schwinn D. A., Jamieson S. A., Reitz B. A., Oyer P. E., Shumway N. E., Stinson E. B. Complications in long-term survivors of cardiac transplantation. Transplant Proc. 1981 Mar;13(1 Pt 1):207–211. [PubMed] [Google Scholar]
  4. Billingham M. E., Cary N. R., Hammond M. E., Kemnitz J., Marboe C., McCallister H. A., Snovar D. C., Winters G. L., Zerbe A. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant. 1990 Nov-Dec;9(6):587–593. [PubMed] [Google Scholar]
  5. Billingham M. E. Histopathology of graft coronary disease. J Heart Lung Transplant. 1992 May-Jun;11(3 Pt 2):S38–S44. [PubMed] [Google Scholar]
  6. Billingham M. E. Pathology and etiology of chronic rejection of the heart. Clin Transplant. 1994 Jun;8(3 Pt 2):289–292. [PubMed] [Google Scholar]
  7. Billingham M. E. Some recent advances in cardiac pathology. Hum Pathol. 1979 Jul;10(4):367–386. doi: 10.1016/s0046-8177(79)80043-x. [DOI] [PubMed] [Google Scholar]
  8. Boudreau N., Turley E., Rabinovitch M. Fibronectin, hyaluronan, and a hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Dev Biol. 1991 Feb;143(2):235–247. doi: 10.1016/0012-1606(91)90074-d. [DOI] [PubMed] [Google Scholar]
  9. Brown D. L., Hibbs M. S., Kearney M., Loushin C., Isner J. M. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation. 1995 Apr 15;91(8):2125–2131. doi: 10.1161/01.cir.91.8.2125. [DOI] [PubMed] [Google Scholar]
  10. Campbell E. J., Cury J. D., Shapiro S. D., Goldberg G. I., Welgus H. G. Neutral proteinases of human mononuclear phagocytes. Cellular differentiation markedly alters cell phenotype for serine proteinases, metalloproteinases, and tissue inhibitor of metalloproteinases. J Immunol. 1991 Feb 15;146(4):1286–1293. [PubMed] [Google Scholar]
  11. Campbell E. J., Silverman E. K., Campbell M. A. Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity. J Immunol. 1989 Nov 1;143(9):2961–2968. [PubMed] [Google Scholar]
  12. Cappelluti E., Strom S. C., Harris R. B. Potential role of two novel elastase-like enzymes in processing pro-transforming growth factor-alpha. Biochemistry. 1993 Jan 19;32(2):551–560. doi: 10.1021/bi00053a021. [DOI] [PubMed] [Google Scholar]
  13. Carlos T. M., Schwartz B. R., Kovach N. L., Yee E., Rosa M., Osborn L., Chi-Rosso G., Newman B., Lobb R., Rosso M. Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood. 1990 Sep 1;76(5):965–970. [PubMed] [Google Scholar]
  14. Clausell N., Molossi S., Rabinovitch M. Increased interleukin-1 beta and fibronectin expression are early features of the development of the postcardiac transplant coronary arteriopathy in piglets. Am J Pathol. 1993 Jun;142(6):1772–1786. [PMC free article] [PubMed] [Google Scholar]
  15. Clausell N., Molossi S., Sett S., Rabinovitch M. In vivo blockade of tumor necrosis factor-alpha in cholesterol-fed rabbits after cardiac transplant inhibits acute coronary artery neointimal formation. Circulation. 1994 Jun;89(6):2768–2779. doi: 10.1161/01.cir.89.6.2768. [DOI] [PubMed] [Google Scholar]
  16. Clausell N., Rabinovitch M. Upregulation of fibronectin synthesis by interleukin-1 beta in coronary artery smooth muscle cells is associated with the development of the post-cardiac transplant arteriopathy in piglets. J Clin Invest. 1993 Oct;92(4):1850–1858. doi: 10.1172/JCI116776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Clowes A. W., Clowes M. M., Au Y. P., Reidy M. A., Belin D. Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ Res. 1990 Jul;67(1):61–67. doi: 10.1161/01.res.67.1.61. [DOI] [PubMed] [Google Scholar]
  18. Clowes A. W., Clowes M. M. Kinetics of cellular proliferation after arterial injury. IV. Heparin inhibits rat smooth muscle mitogenesis and migration. Circ Res. 1986 Jun;58(6):839–845. doi: 10.1161/01.res.58.6.839. [DOI] [PubMed] [Google Scholar]
  19. Clowes A. W., Clowes M. M., Reidy M. A. Kinetics of cellular proliferation after arterial injury. III. Endothelial and smooth muscle growth in chronically denuded vessels. Lab Invest. 1986 Mar;54(3):295–303. [PubMed] [Google Scholar]
  20. Clowes A. W., Karnowsky M. J. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature. 1977 Feb 17;265(5595):625–626. doi: 10.1038/265625a0. [DOI] [PubMed] [Google Scholar]
  21. Clément M. V., Haddad P., Soulié A., Benvenuti C., Lichtenheld M. G., Podack E. R., Sigaux N., Sasportes M. Perforin and granzyme B as markers for acute rejection in heart transplantation. Int Immunol. 1991 Nov;3(11):1175–1181. doi: 10.1093/intimm/3.11.1175. [DOI] [PubMed] [Google Scholar]
  22. Clément M. V., Soulié A., Legros-Maida S., Guillet J., Gluckman E., Sigaux N., Sasportes M. Perforin and granzyme B: predictive markers for acute GVHD or cardiac rejection after bone marrow or heart transplantation. Nouv Rev Fr Hematol. 1991;33(6):465–470. [PubMed] [Google Scholar]
  23. Crinnion J. N., Homer-Vanniasinkam S., Hatton R., Parkin S. M., Gough M. J. Role of neutrophil depletion and elastase inhibition in modifying skeletal muscle reperfusion injury. Cardiovasc Surg. 1994 Dec;2(6):749–753. [PubMed] [Google Scholar]
  24. Croute F., Delaporte E., Bonnefoy J. Y., Fertin C., Thivolet J., Nicolas J. F. Interleukin-1 beta stimulates fibroblast elastase activity. Br J Dermatol. 1991 Jun;124(6):538–541. doi: 10.1111/j.1365-2133.1991.tb04946.x. [DOI] [PubMed] [Google Scholar]
  25. Damle N. K., Aruffo A. Vascular cell adhesion molecule 1 induces T-cell antigen receptor-dependent activation of CD4+T lymphocytes. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6403–6407. doi: 10.1073/pnas.88.15.6403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Eich D. M., Nestler J. E., Johnson D. E., Dworkin G. H., Ko D., Wechsler A. S., Hess M. L. Inhibition of accelerated coronary atherosclerosis with dehydroepiandrosterone in the heterotopic rabbit model of cardiac transplantation. Circulation. 1993 Jan;87(1):261–269. doi: 10.1161/01.cir.87.1.261. [DOI] [PubMed] [Google Scholar]
  27. Fine R., Campbell M. E., Collins J. F. Elastolytic activity of peripheral blood monocytes. Connect Tissue Res. 1984;13(1):27–35. doi: 10.3109/03008208409152140. [DOI] [PubMed] [Google Scholar]
  28. Foegh M. L. Accelerated cardiac transplant atherosclerosis/chronic rejection in rabbits: inhibition by angiopeptin. Transplant Proc. 1993 Apr;25(2):2095–2097. [PubMed] [Google Scholar]
  29. Foegh M. L., Khirabadi B. S., Chambers E., Amamoo S., Ramwell P. W. Inhibition of coronary artery transplant atherosclerosis in rabbits with angiopeptin, an octapeptide. Atherosclerosis. 1989 Aug;78(2-3):229–236. doi: 10.1016/0021-9150(89)90228-1. [DOI] [PubMed] [Google Scholar]
  30. Foegh M. L., Khirabadi B. S., Chambers E., Ramwell P. W. Peptide inhibition of accelerated transplant atherosclerosis. Transplant Proc. 1989 Aug;21(4):3674–3676. [PubMed] [Google Scholar]
  31. Galis Z. S., Muszynski M., Sukhova G. K., Simon-Morrissey E., Unemori E. N., Lark M. W., Amento E., Libby P. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res. 1994 Jul;75(1):181–189. doi: 10.1161/01.res.75.1.181. [DOI] [PubMed] [Google Scholar]
  32. Galis Z. S., Sukhova G. K., Lark M. W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 Dec;94(6):2493–2503. doi: 10.1172/JCI117619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Gassel A. M., Hansmann M. L., Radzun H. J., Weyand M. Human cardiac allograft rejection. Correlation of grading with expression of different monocyte/macrophage markers. Am J Clin Pathol. 1990 Sep;94(3):274–279. doi: 10.1093/ajcp/94.3.274. [DOI] [PubMed] [Google Scholar]
  34. Gassel A. M., Radzun M. L., Hansmann H. J., Weyand M., Konertz W. Monocytes and macrophages in the rejection of human cardiac allografts. Transplant Proc. 1989 Feb;21(1 Pt 3):2514–2516. [PubMed] [Google Scholar]
  35. Griffiths G. M., Namikawa R., Mueller C., Liu C. C., Young J. D., Billingham M., Weissman I. Granzyme A and perforin as markers for rejection in cardiac transplantation. Eur J Immunol. 1991 Mar;21(3):687–693. doi: 10.1002/eji.1830210322. [DOI] [PubMed] [Google Scholar]
  36. Hayashi T., Nozawa M., Otsu I., Deguchi H., Kitaura Y., Kawamura K. Cell-mediated cytotoxicity in acute rat cardiac allograft rejection: an immunological and ultrastructural study. Virchows Arch A Pathol Anat Histopathol. 1991;418(1):41–50. doi: 10.1007/BF01600243. [DOI] [PubMed] [Google Scholar]
  37. Hornebeck W., Adnet J. J., Robert L. Age dependent variation of elastin and elastase in aorta and human breast cancers. Exp Gerontol. 1978;13(5):293–298. doi: 10.1016/0531-5565(78)90037-2. [DOI] [PubMed] [Google Scholar]
  38. Hornebeck W., Derouette J. C., Robert L. Isolation, purification and properties of aortic elastase. FEBS Lett. 1975 Oct 15;58(1):66–70. doi: 10.1016/0014-5793(75)80227-4. [DOI] [PubMed] [Google Scholar]
  39. Hudig D., Allison N. J., Pickett T. M., Winkler U., Kam C. M., Powers J. C. The function of lymphocyte proteases. Inhibition and restoration of granule-mediated lysis with isocoumarin serine protease inhibitors. J Immunol. 1991 Aug 15;147(4):1360–1368. [PubMed] [Google Scholar]
  40. Hudig D., Ewoldt G. R., Woodard S. L. Proteases and lymphocyte cytotoxic killing mechanisms. Curr Opin Immunol. 1993 Feb;5(1):90–96. doi: 10.1016/0952-7915(93)90086-8. [DOI] [PubMed] [Google Scholar]
  41. Hudig D., Redelman D., Minning L. L. The requirement for proteinase activity for human lymphocyte-mediated natural cytotoxicity (NK): evidence that the proteinase is serine dependent and has aromatic amino acid specificity of cleavage. J Immunol. 1984 Nov;133(5):2647–2654. [PubMed] [Google Scholar]
  42. Häyry P., Paavonen T., Mennander A., Ustinov J., Räisänen A., Lemström K. Pathophysiology of allograft arteriosclerosis. Transplant Proc. 1993 Apr;25(2):2070–2070. [PubMed] [Google Scholar]
  43. Hébert C. A., Luscinskas F. W., Kiely J. M., Luis E. A., Darbonne W. C., Bennett G. L., Liu C. C., Obin M. S., Gimbrone M. A., Jr, Baker J. B. Endothelial and leukocyte forms of IL-8. Conversion by thrombin and interactions with neutrophils. J Immunol. 1990 Nov 1;145(9):3033–3040. [PubMed] [Google Scholar]
  44. Johnson M. R. Transplant coronary disease: nonimmunologic risk factors. J Heart Lung Transplant. 1992 May-Jun;11(3 Pt 2):S124–S132. [PubMed] [Google Scholar]
  45. Jones P. A., Werb Z. Degradation of connective tissue matrices by macrophages. II. Influence of matrix composition on proteolysis of glycoproteins, elastin, and collagen by macrophages in culture. J Exp Med. 1980 Dec 1;152(6):1527–1536. doi: 10.1084/jem.152.6.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Jonjic N., Jílek P., Bernasconi S., Peri G., Martìn-Padura I., Cenzuales S., Dejana E., Mantovani A. Molecules involved in the adhesion and cytotoxicity of activated monocytes on endothelial cells. J Immunol. 1992 Apr 1;148(7):2080–2083. [PubMed] [Google Scholar]
  47. Jäkel K. T., Löning T. Herpes virus infections, acute rejection, and transplant arteriosclerosis in human cardiac allografts. Transplant Proc. 1993 Apr;25(2):2029–2030. [PubMed] [Google Scholar]
  48. Klagsbrun M., Edelman E. R. Biological and biochemical properties of fibroblast growth factors. Implications for the pathogenesis of atherosclerosis. Arteriosclerosis. 1989 May-Jun;9(3):269–278. doi: 10.1161/01.atv.9.3.269. [DOI] [PubMed] [Google Scholar]
  49. Kobayashi J., Wigle D., Childs T., Zhu L., Keeley F. W., Rabinovitch M. Serum-induced vascular smooth muscle cell elastolytic activity through tyrosine kinase intracellular signalling. J Cell Physiol. 1994 Jul;160(1):121–131. doi: 10.1002/jcp.1041600115. [DOI] [PubMed] [Google Scholar]
  50. Kuwahara M., Jacobsson J., Kuwahara M., Kagan E., Ramwell P. W., Foegh M. L. Coronary artery ultrastructural changes in cardiac transplant atherosclerosis in the rabbit. Transplantation. 1991 Nov;52(5):759–765. doi: 10.1097/00007890-199111000-00001. [DOI] [PubMed] [Google Scholar]
  51. LaBourene J. I., Coles J. G., Johnson D. J., Mehra A., Keeley F. W., Rabinovitch M. Alterations in elastin and collagen related to the mechanism of progressive pulmonary venous obstruction in a piglet model. A hemodynamic, ultrastructural, and biochemical study. Circ Res. 1990 Feb;66(2):438–456. doi: 10.1161/01.res.66.2.438. [DOI] [PubMed] [Google Scholar]
  52. Libby P., Swanson S. J., Tanaka H., Murray A., Schoen F. J., Pober J. S. Immunopathology of coronary arteriosclerosis in transplanted hearts. J Heart Lung Transplant. 1992 May-Jun;11(3 Pt 2):S5–S6. [PubMed] [Google Scholar]
  53. Libby P., Tanaka H. The pathogenesis of coronary arteriosclerosis ("chronic rejection") in transplanted hearts. Clin Transplant. 1994 Jun;8(3 Pt 2):313–318. [PubMed] [Google Scholar]
  54. Lyons R. M., Keski-Oja J., Moses H. L. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol. 1988 May;106(5):1659–1665. doi: 10.1083/jcb.106.5.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Maruyama K., Ye C. L., Woo M., Venkatacharya H., Lines L. D., Silver M. M., Rabinovitch M. Chronic hypoxic pulmonary hypertension in rats and increased elastolytic activity. Am J Physiol. 1991 Dec;261(6 Pt 2):H1716–H1726. doi: 10.1152/ajpheart.1991.261.6.H1716. [DOI] [PubMed] [Google Scholar]
  56. Molossi S., Clausell N., Rabinovitch M. Reciprocal induction of tumor necrosis factor-alpha and interleukin-1 beta activity mediates fibronectin synthesis in coronary artery smooth muscle cells. J Cell Physiol. 1995 Apr;163(1):19–29. doi: 10.1002/jcp.1041630104. [DOI] [PubMed] [Google Scholar]
  57. Molossi S., Elices M., Arrhenius T., Diaz R., Coulber C., Rabinovitch M. Blockade of very late antigen-4 integrin binding to fibronectin with connecting segment-1 peptide reduces accelerated coronary arteriopathy in rabbit cardiac allografts. J Clin Invest. 1995 Jun;95(6):2601–2610. doi: 10.1172/JCI117962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Molossi S., Elices M., Arrhenius T., Rabinovitch M. Lymphocyte transendothelial migration toward smooth muscle cells in interleukin-1 beta-stimulated co-cultures is related to fibronectin interactions with alpha 4 beta 1 and alpha 5 beta 1 integrins. J Cell Physiol. 1995 Sep;164(3):620–633. doi: 10.1002/jcp.1041640321. [DOI] [PubMed] [Google Scholar]
  59. Mueller S. G., Paterson A. J., Kudlow J. E. Transforming growth factor alpha in arterioles: cell surface processing of its precursor by elastases. Mol Cell Biol. 1990 Sep;10(9):4596–4602. doi: 10.1128/mcb.10.9.4596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Nara K., Ito S., Ito T., Suzuki Y., Ghoneim M. A., Tachibana S., Hirose S. Elastase inhibitor elafin is a new type of proteinase inhibitor which has a transglutaminase-mediated anchoring sequence termed "cementoin". J Biochem. 1994 Mar;115(3):441–448. doi: 10.1093/oxfordjournals.jbchem.a124357. [DOI] [PubMed] [Google Scholar]
  61. O'Brien J. P., Regan W. A study of elastic tissue and actinic radiation in "aging," temporal arteritis, polymyalgia rheumatica, and atherosclerosis. The actinic storm in the modern world. J Am Acad Dermatol. 1991 May;24(5 Pt 1):765–776. doi: 10.1016/0190-9622(91)70118-l. [DOI] [PubMed] [Google Scholar]
  62. Oho S., Rabinovitch M. Post-cardiac transplant arteriopathy in piglets is associated with fragmentation of elastin and increased activity of a serine elastase. Am J Pathol. 1994 Jul;145(1):202–210. [PMC free article] [PubMed] [Google Scholar]
  63. Romanic A. M., Madri J. A. The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent. J Cell Biol. 1994 Jun;125(5):1165–1178. doi: 10.1083/jcb.125.5.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ruers T. J., Schutte B., van der Linden C. J., Buurman W. A. Cellular proliferation at the site of organ allografts and the influence of immunosuppressive therapy. Transplantation. 1990 Oct;50(4):568–572. doi: 10.1097/00007890-199010000-00007. [DOI] [PubMed] [Google Scholar]
  65. Saksela O., Moscatelli D., Sommer A., Rifkin D. B. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol. 1988 Aug;107(2):743–751. doi: 10.1083/jcb.107.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Sallenave J. M., Marsden M. D., Ryle A. P. Isolation of elafin and elastase-specific inhibitor (ESI) from bronchial secretions. Evidence of sequence homology and immunological cross-reactivity. Biol Chem Hoppe Seyler. 1992 Jan;373(1):27–33. doi: 10.1515/bchm3.1992.373.1.27. [DOI] [PubMed] [Google Scholar]
  67. Sallenave J. M., Ryle A. P. Purification and characterization of elastase-specific inhibitor. Sequence homology with mucus proteinase inhibitor. Biol Chem Hoppe Seyler. 1991 Jan;372(1):13–21. doi: 10.1515/bchm3.1991.372.1.13. [DOI] [PubMed] [Google Scholar]
  68. Sallenave J. M., Shulmann J., Crossley J., Jordana M., Gauldie J. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes. Am J Respir Cell Mol Biol. 1994 Dec;11(6):733–741. doi: 10.1165/ajrcmb.11.6.7946401. [DOI] [PubMed] [Google Scholar]
  69. Sallenave J. M., Silva A. Characterization and gene sequence of the precursor of elafin, an elastase-specific inhibitor in bronchial secretions. Am J Respir Cell Mol Biol. 1993 Apr;8(4):439–445. doi: 10.1165/ajrcmb/8.4.439. [DOI] [PubMed] [Google Scholar]
  70. Salomon R. N., Hughes C. C., Schoen F. J., Payne D. D., Pober J. S., Libby P. Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells. Am J Pathol. 1991 Apr;138(4):791–798. [PMC free article] [PubMed] [Google Scholar]
  71. Sato Y., Rifkin D. B. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol. 1989 Jul;109(1):309–315. doi: 10.1083/jcb.109.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Senior R. M., Campbell E. J. Cathepsin G in human mononuclear phagocytes: comparisons between monocytes and U937 monocyte-like cells. J Immunol. 1984 May;132(5):2547–2551. [PubMed] [Google Scholar]
  73. Senior R. M., Campbell E. J., Landis J. A., Cox F. R., Kuhn C., Koren H. S. Elastase of U-937 monocytelike cells. Comparisons with elastases derived from human monocytes and neutrophils and murine macrophagelike cells. J Clin Invest. 1982 Feb;69(2):384–393. doi: 10.1172/JCI110462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Senior R. M., Connolly N. L., Cury J. D., Welgus H. G., Campbell E. J. Elastin degradation by human alveolar macrophages. A prominent role of metalloproteinase activity. Am Rev Respir Dis. 1989 May;139(5):1251–1256. doi: 10.1164/ajrccm/139.5.1251. [DOI] [PubMed] [Google Scholar]
  75. Senior R. M., Griffin G. L., Mecham R. P., Wrenn D. S., Prasad K. U., Urry D. W. Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol. 1984 Sep;99(3):870–874. doi: 10.1083/jcb.99.3.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Shapiro S. D., Kobayashi D. K., Pentland A. P., Welgus H. G. Induction of macrophage metalloproteinases by extracellular matrix. Evidence for enzyme- and substrate-specific responses involving prostaglandin-dependent mechanisms. J Biol Chem. 1993 Apr 15;268(11):8170–8175. [PubMed] [Google Scholar]
  77. Simon M. M., Fruth U., Simon H. G., Kramer M. D. A specific serine proteinase is inducible in Lyt-2+,L3T4- and Lyt-2-,L3T4+ T cells in vitro but is mainly associated with Lyt-2+,L3T4- effector cells in vivo. Eur J Immunol. 1986 Dec;16(12):1559–1568. doi: 10.1002/eji.1830161215. [DOI] [PubMed] [Google Scholar]
  78. Smith S. C., Jr AHA president's letter. Circulation. 1995 Jul 1;92(1):1–1. [PubMed] [Google Scholar]
  79. Suter S., Schaad U. B., Roux-Lombard P., Girardin E., Grau G., Dayer J. M. Relation between tumor necrosis factor-alpha and granulocyte elastase-alpha 1-proteinase inhibitor complexes in the plasma of patients with cystic fibrosis. Am Rev Respir Dis. 1989 Dec;140(6):1640–1644. doi: 10.1164/ajrccm/140.6.1640. [DOI] [PubMed] [Google Scholar]
  80. Taipale J., Koli K., Keski-Oja J. Release of transforming growth factor-beta 1 from the pericellular matrix of cultured fibroblasts and fibrosarcoma cells by plasmin and thrombin. J Biol Chem. 1992 Dec 15;267(35):25378–25384. [PubMed] [Google Scholar]
  81. Takahashi H., Nukiwa T., Basset P., Crystal R. G. Myelomonocytic cell lineage expression of the neutrophil elastase gene. J Biol Chem. 1988 Feb 15;263(5):2543–2547. [PubMed] [Google Scholar]
  82. Takahashi S., Seifter S., Yang F. C. A new radioactive assay for enzymes with elastolytic activity using reduced tritiated elastin. The effect of sodium dodecyl sulfate on elastolysis. Biochim Biophys Acta. 1973 Nov 15;327(1):138–145. doi: 10.1016/0005-2744(73)90111-3. [DOI] [PubMed] [Google Scholar]
  83. Tanaka H., Sukhova G. K., Swanson S. J., Cybulsky M. I., Schoen F. J., Libby P. Endothelial and smooth muscle cells express leukocyte adhesion molecules heterogeneously during acute rejection of rabbit cardiac allografts. Am J Pathol. 1994 May;144(5):938–951. [PMC free article] [PubMed] [Google Scholar]
  84. Tanaka H., Swanson S. J., Sukhova G., Schoen F. J., Libby P. Early proliferation of medial smooth muscle cells in coronary arteries of rabbit cardiac allografts during immunosuppression with cyclosporine A. Transplant Proc. 1995 Jun;27(3):2062–2065. [PubMed] [Google Scholar]
  85. Thompson K., Rabinovitch M. Exogenous leukocyte and endogenous elastases can mediate mitogenic activity in pulmonary artery smooth muscle cells by release of extracellular-matrix bound basic fibroblast growth factor. J Cell Physiol. 1996 Mar;166(3):495–505. doi: 10.1002/(SICI)1097-4652(199603)166:3<495::AID-JCP4>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  86. Todorovich-Hunter L., Dodo H., Ye C., McCready L., Keeley F. W., Rabinovitch M. Increased pulmonary artery elastolytic activity in adult rats with monocrotaline-induced progressive hypertensive pulmonary vascular disease compared with infant rats with nonprogressive disease. Am Rev Respir Dis. 1992 Jul;146(1):213–223. doi: 10.1164/ajrccm/146.1.213. [DOI] [PubMed] [Google Scholar]
  87. Tschopp J., Jongeneel C. V. Cytotoxic T lymphocyte mediated cytolysis. Biochemistry. 1988 Apr 19;27(8):2641–2646. doi: 10.1021/bi00408a001. [DOI] [PubMed] [Google Scholar]
  88. Tsunemi M., Kato H., Nishiuchi Y., Kumagaye S., Sakakibara S. Synthesis and structure-activity relationships of elafin, an elastase-specific inhibitor. Biochem Biophys Res Commun. 1992 Jun 30;185(3):967–973. doi: 10.1016/0006-291x(92)91721-2. [DOI] [PubMed] [Google Scholar]
  89. Tyagi S. C., Ratajska A., Weber K. T. Myocardial matrix metalloproteinase(s): localization and activation. Mol Cell Biochem. 1993 Sep 8;126(1):49–59. doi: 10.1007/BF01772207. [DOI] [PubMed] [Google Scholar]
  90. Uretsky B. F., Kormos R. L., Zerbe T. R., Lee A., Tokarczyk T. R., Murali S., Reddy P. S., Denys B. G., Griffith B. P., Hardesty R. L. Cardiac events after heart transplantation: incidence and predictive value of coronary arteriography. J Heart Lung Transplant. 1992 May-Jun;11(3 Pt 2):S45–S51. [PubMed] [Google Scholar]
  91. Wanders A., Akyürek M. L., Waltenberger J., Stafberg C., Larsson E., Zhiping R., Funa K., Fellström B. Impact of ischemia time on chronic vascular rejection in the rat--effects of angiopeptin. Transplant Proc. 1993 Apr;25(2):2098–2099. [PubMed] [Google Scholar]
  92. Werb Z., Tremble P. M., Behrendtsen O., Crowley E., Damsky C. H. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol. 1989 Aug;109(2):877–889. doi: 10.1083/jcb.109.2.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Wiedow O., Lüademann J., Utecht B. Elafin is a potent inhibitor of proteinase 3. Biochem Biophys Res Commun. 1991 Jan 15;174(1):6–10. doi: 10.1016/0006-291x(91)90476-n. [DOI] [PubMed] [Google Scholar]
  94. Wiedow O., Schröder J. M., Gregory H., Young J. A., Christophers E. Elafin: an elastase-specific inhibitor of human skin. Purification, characterization, and complete amino acid sequence. J Biol Chem. 1990 Sep 5;265(25):14791–14795. [PubMed] [Google Scholar]
  95. Ye C. L., Rabinovitch M. Inhibition of elastolysis by SC-37698 reduces development and progression of monocrotaline pulmonary hypertension. Am J Physiol. 1991 Oct;261(4 Pt 2):H1255–H1267. doi: 10.1152/ajpheart.1991.261.4.H1255. [DOI] [PubMed] [Google Scholar]
  96. Ying Q. L., Simon S. R. Kinetics of the inhibition of human leukocyte elastase by elafin, a 6-kilodalton elastase-specific inhibitor from human skin. Biochemistry. 1993 Feb 23;32(7):1866–1874. doi: 10.1021/bi00058a021. [DOI] [PubMed] [Google Scholar]
  97. Zhang M., Zou Z., Maass N., Sager R. Differential expression of elafin in human normal mammary epithelial cells and carcinomas is regulated at the transcriptional level. Cancer Res. 1995 Jun 15;55(12):2537–2541. [PubMed] [Google Scholar]
  98. Zhu L., Wigle D., Hinek A., Kobayashi J., Ye C., Zuker M., Dodo H., Keeley F. W., Rabinovitch M. The endogenous vascular elastase that governs development and progression of monocrotaline-induced pulmonary hypertension in rats is a novel enzyme related to the serine proteinase adipsin. J Clin Invest. 1994 Sep;94(3):1163–1171. doi: 10.1172/JCI117432. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES