Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jun 1;97(11):2509–2516. doi: 10.1172/JCI118698

Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism.

M Brink 1, J Wellen 1, P Delafontaine 1
PMCID: PMC507336  PMID: 8647943

Abstract

The renin-angiotensin system regulates normal cardiovascular homeostasis and is activated in certain forms of hypertension and in heart failure. Angiotensin II has multiple physiological effects and we have shown recently that its growth-promoting effects on vascular smooth muscle require autocrine activation of the IGF I receptor. To study the effect of angiotensin II on circulating IGF I, we infused rats with 500 ng/kg/min angiotensin II for up to 14 d. Angiotensin II markedly reduced plasma IGF I levels (56 and 41% decrease at 1 and 2 wk, respectively) and IGF binding protein-3 levels, and increased IGF binding protein-2 levels, a pattern suggestive of dietary restriction. Compared with sham, angiotensin II-infused hypertensive rats lost 18-26% of body weight by 1 wk, and pair-feeding experiments indicated that 74% of this loss was attributable to a reduction in food intake. The vasodilator hydralazine and the AT1 receptor antagonist losartan had comparable effects to reverse angiotensin II-induced hypertension, but only losartan blocked the changes in body weight and in circulating IGF I and its binding proteins produced by angiotensin II. Moreover, in Dahl rats that were hypertensive in response to a high-salt diet, none of these changes occurred. Thus, angiotensin II produces weight loss through a pressor-independent mechanism that includes a marked anorexigenic effect and an additional (likely metabolic) effect. These findings have profound implications for understanding the pathophysiology of conditions, such as congestive heart failure, in which the renin-angiotensin system is activated.

Full Text

The Full Text of this article is available as a PDF (250.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham G., Simon G. Autopotentiation of pressor responses by subpressor angiotensin II in rats. Am J Hypertens. 1994 Mar;7(3):269–275. doi: 10.1093/ajh/7.3.269. [DOI] [PubMed] [Google Scholar]
  2. Alderman M. H., Madhavan S., Ooi W. L., Cohen H., Sealey J. E., Laragh J. H. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med. 1991 Apr 18;324(16):1098–1104. doi: 10.1056/NEJM199104183241605. [DOI] [PubMed] [Google Scholar]
  3. Anwar A., Delafontaine P. Hypertension increases insulin-like growth factor binding protein-4 mRNA levels in rat aorta. Hypertension. 1994 Dec;24(6):679–685. doi: 10.1161/01.hyp.24.6.679. [DOI] [PubMed] [Google Scholar]
  4. Aquitlera G., Marusic E. T. Role of the renin angiotensin system on the biosynthesis of aldosterone. Endocrinology. 1971 Dec;89(6):1524–1529. doi: 10.1210/endo-89-6-1524. [DOI] [PubMed] [Google Scholar]
  5. Baker K. M., Aceto J. F. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol. 1990 Aug;259(2 Pt 2):H610–H618. doi: 10.1152/ajpheart.1990.259.2.H610. [DOI] [PubMed] [Google Scholar]
  6. Beck A., Grasmugg B., Singer E., Bacher S., Raberger G. Angiotensin-induced hypertension in conscious dogs: biochemical parameters and baroreceptor reflex. Cardiovasc Res. 1985 Nov;19(11):721–726. doi: 10.1093/cvr/19.11.721. [DOI] [PubMed] [Google Scholar]
  7. Blantz R. C., Konnen K. S., Tucker B. J. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest. 1976 Feb;57(2):419–434. doi: 10.1172/JCI108293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Breier B. H., Gallaher B. W., Gluckman P. D. Radioimmunoassay for insulin-like growth factor-I: solutions to some potential problems and pitfalls. J Endocrinol. 1991 Mar;128(3):347–357. doi: 10.1677/joe.0.1280347. [DOI] [PubMed] [Google Scholar]
  9. Brunner H. R., Laragh J. H., Baer L., Newton M. A., Goodwin F. T., Krakoff L. R., Bard R. H., Bühler F. R. Essential hypertension: renin and aldosterone, heart attack and stroke. N Engl J Med. 1972 Mar 2;286(9):441–449. doi: 10.1056/NEJM197203022860901. [DOI] [PubMed] [Google Scholar]
  10. Brunner H. R., Sealey J. E., Laragh J. H. Renin as a risk factor in essential hypertension: more evidence. Am J Med. 1973 Sep;55(3):295–302. doi: 10.1016/0002-9343(73)90131-9. [DOI] [PubMed] [Google Scholar]
  11. Carr J. G., Stevenson L. W., Walden J. A., Heber D. Prevalence and hemodynamic correlates of malnutrition in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1989 Mar 15;63(11):709–713. doi: 10.1016/0002-9149(89)90256-7. [DOI] [PubMed] [Google Scholar]
  12. Cohn J. N., Johnson G., Ziesche S., Cobb F., Francis G., Tristani F., Smith R., Dunkman W. B., Loeb H., Wong M. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991 Aug 1;325(5):303–310. doi: 10.1056/NEJM199108013250502. [DOI] [PubMed] [Google Scholar]
  13. Crandall D. L., Herzlinger H. E., Saunders B. D., Zolotor R. C., Feliciano L., Cervoni P. Identification and characterization of angiotensin II receptors in rat epididymal adipocyte membranes. Metabolism. 1993 Apr;42(4):511–515. doi: 10.1016/0026-0495(93)90111-z. [DOI] [PubMed] [Google Scholar]
  14. Crawford D. C., Chobanian A. V., Brecher P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res. 1994 Apr;74(4):727–739. doi: 10.1161/01.res.74.4.727. [DOI] [PubMed] [Google Scholar]
  15. Daemen M. J., Lombardi D. M., Bosman F. T., Schwartz S. M. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res. 1991 Feb;68(2):450–456. doi: 10.1161/01.res.68.2.450. [DOI] [PubMed] [Google Scholar]
  16. Delafontaine P., Bernstein K. E., Alexander R. W. Insulin-like growth factor I gene expression in vascular cells. Hypertension. 1991 May;17(5):693–699. doi: 10.1161/01.hyp.17.5.693. [DOI] [PubMed] [Google Scholar]
  17. Delafontaine P. Insulin-like growth factor I and its binding proteins in the cardiovascular system. Cardiovasc Res. 1995 Dec;30(6):825–834. [PubMed] [Google Scholar]
  18. Delafontaine P., Lou H., Alexander R. W. Regulation of insulin-like growth factor I messenger RNA levels in vascular smooth muscle cells. Hypertension. 1991 Dec;18(6):742–747. doi: 10.1161/01.hyp.18.6.742. [DOI] [PubMed] [Google Scholar]
  19. Delafontaine P., Lou H. Angiotensin II regulates insulin-like growth factor I gene expression in vascular smooth muscle cells. J Biol Chem. 1993 Aug 5;268(22):16866–16870. [PubMed] [Google Scholar]
  20. Delafontaine P., Meng X. P., Ku L., Du J. Regulation of vascular smooth muscle cell insulin-like growth factor I receptors by phosphorothioate oligonucleotides. Effects on cell growth and evidence that sense targeting at the ATG site increases receptor expression. J Biol Chem. 1995 Jun 16;270(24):14383–14388. doi: 10.1074/jbc.270.24.14383. [DOI] [PubMed] [Google Scholar]
  21. Donohue T. J., Dworkin L. D., Lango M. N., Fliegner K., Lango R. P., Benstein J. A., Slater W. R., Catanese V. M. Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy. Circulation. 1994 Feb;89(2):799–809. doi: 10.1161/01.cir.89.2.799. [DOI] [PubMed] [Google Scholar]
  22. Dostal D. E., Baker K. M. Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am J Hypertens. 1992 May;5(5 Pt 1):276–280. doi: 10.1093/ajh/5.5.276. [DOI] [PubMed] [Google Scholar]
  23. Du J., Meng X. P., Delafontaine P. Transcriptional regulation of the insulin-like growth factor-I receptor gene: evidence for protein kinase C-dependent and -independent pathways. Endocrinology. 1996 Apr;137(4):1378–1384. doi: 10.1210/endo.137.4.8625914. [DOI] [PubMed] [Google Scholar]
  24. Fath K. A., Alexander R. W., Delafontaine P. Abdominal coarctation increases insulin-like growth factor I mRNA levels in rat aorta. Circ Res. 1993 Feb;72(2):271–277. doi: 10.1161/01.res.72.2.271. [DOI] [PubMed] [Google Scholar]
  25. Fitzsimons J. T. Angiotensin stimulation of the central nervous system. Rev Physiol Biochem Pharmacol. 1980;87:117–167. doi: 10.1007/BFb0030897. [DOI] [PubMed] [Google Scholar]
  26. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fryburg D. A., Jahn L. A., Hill S. A., Oliveras D. M., Barrett E. J. Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. J Clin Invest. 1995 Oct;96(4):1722–1729. doi: 10.1172/JCI118217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Geenen D. L., Malhotra A., Scheuer J. Angiotensin II increases cardiac protein synthesis in adult rat heart. Am J Physiol. 1993 Jul;265(1 Pt 2):H238–H243. doi: 10.1152/ajpheart.1993.265.1.H238. [DOI] [PubMed] [Google Scholar]
  29. Griffin S. A., Brown W. C., MacPherson F., McGrath J. C., Wilson V. G., Korsgaard N., Mulvany M. J., Lever A. F. Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension. 1991 May;17(5):626–635. doi: 10.1161/01.hyp.17.5.626. [DOI] [PubMed] [Google Scholar]
  30. Gronan R. J., York D. H. Effects of chronic intraventricular administration of angiotensin II on drinking behavior and blood pressure. Pharmacol Biochem Behav. 1979 Jan;10(1):121–126. doi: 10.1016/0091-3057(79)90177-1. [DOI] [PubMed] [Google Scholar]
  31. Hall J. E. Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation. Am J Physiol. 1986 Jun;250(6 Pt 2):R960–R972. doi: 10.1152/ajpregu.1986.250.6.R960. [DOI] [PubMed] [Google Scholar]
  32. Hanson M. C., Fath K. A., Alexander R. W., Delafontaine P. Induction of cardiac insulin-like growth factor I gene expression in pressure overload hypertrophy. Am J Med Sci. 1993 Aug;306(2):69–74. doi: 10.1097/00000441-199308000-00001. [DOI] [PubMed] [Google Scholar]
  33. Henegar J. R., Brower G. L., Kabour A., Janicki J. S. Catecholamine response to chronic ANG II infusion and its role in myocyte and coronary vascular damage. Am J Physiol. 1995 Nov;269(5 Pt 2):H1564–H1569. doi: 10.1152/ajpheart.1995.269.5.H1564. [DOI] [PubMed] [Google Scholar]
  34. Himeno H., Crawford D. C., Hosoi M., Chobanian A. V., Brecher P. Angiotensin II alters aortic fibronectin independently of hypertension. Hypertension. 1994 Jun;23(6 Pt 2):823–826. doi: 10.1161/01.hyp.23.6.823. [DOI] [PubMed] [Google Scholar]
  35. Jones J. I., Clemmons D. R. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995 Feb;16(1):3–34. doi: 10.1210/edrv-16-1-3. [DOI] [PubMed] [Google Scholar]
  36. Kabour A., Henegar J. R., Devineni V. R., Janicki J. S. Prevention of angiotensin II induced myocyte necrosis and coronary vascular damage by lisinopril and losartan in the rat. Cardiovasc Res. 1995 Apr;29(4):543–548. [PubMed] [Google Scholar]
  37. Ketelslegers J. M., Maiter D., Maes M., Underwood L. E., Thissen J. P. Nutritional regulation of insulin-like growth factor-I. Metabolism. 1995 Oct;44(10 Suppl 4):50–57. doi: 10.1016/0026-0495(95)90221-x. [DOI] [PubMed] [Google Scholar]
  38. Kim S., Ohta K., Hamaguchi A., Yukimura T., Miura K., Iwao H. Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension. 1995 Jun;25(6):1252–1259. doi: 10.1161/01.hyp.25.6.1252. [DOI] [PubMed] [Google Scholar]
  39. Kuroda T., Shida H. Angiotensin II-induced myocardial damage with a special reference to low cardiac output syndrome. Jpn Heart J. 1983 Mar;24(2):235–243. doi: 10.1536/ihj.24.235. [DOI] [PubMed] [Google Scholar]
  40. PITTMAN J. G., COHEN P. THE PATHOGENESIS OF CARDIAC CACHEXIA. N Engl J Med. 1964 Aug 20;271:403–CONTD. doi: 10.1056/NEJM196408202710807. [DOI] [PubMed] [Google Scholar]
  41. Packer M. Pathophysiology of chronic heart failure. Lancet. 1992 Jul 11;340(8811):88–92. doi: 10.1016/0140-6736(92)90405-r. [DOI] [PubMed] [Google Scholar]
  42. Pedersen E. B., Danielsen H., Jensen T., Madsen M., Sørensen S. S., Thomsen O. O. Angiotensin II, aldosterone and arginine vasopressin in plasma in congestive heart failure. Eur J Clin Invest. 1986 Feb;16(1):56–60. doi: 10.1111/j.1365-2362.1986.tb01308.x. [DOI] [PubMed] [Google Scholar]
  43. Pettinger W. A. Minoxidil and the treatment of severe hypertension. N Engl J Med. 1980 Oct 16;303(16):922–926. doi: 10.1056/NEJM198010163031607. [DOI] [PubMed] [Google Scholar]
  44. Pfeffer M. A., Braunwald E., Moyé L. A., Basta L., Brown E. J., Jr, Cuddy T. E., Davis B. R., Geltman E. M., Goldman S., Flaker G. C. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992 Sep 3;327(10):669–677. doi: 10.1056/NEJM199209033271001. [DOI] [PubMed] [Google Scholar]
  45. Phillips P. A., Rolls B. J., Ledingham J. G., Morton J. J., Forsling M. L. Angiotensin II-induced thirst and vasopressin release in man. Clin Sci (Lond) 1985 Jun;68(6):669–674. doi: 10.1042/cs0680669. [DOI] [PubMed] [Google Scholar]
  46. Powell J. S., Clozel J. P., Müller R. K., Kuhn H., Hefti F., Hosang M., Baumgartner H. R. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science. 1989 Jul 14;245(4914):186–188. doi: 10.1126/science.2526370. [DOI] [PubMed] [Google Scholar]
  47. Reid I. A. The use of saralasin to evaluate the function of the brain renin-angiotensin system. Prog Biochem Pharmacol. 1976;12:117–134. [PubMed] [Google Scholar]
  48. Saavedra J. M. Brain and pituitary angiotensin. Endocr Rev. 1992 May;13(2):329–380. doi: 10.1210/edrv-13-2-329. [DOI] [PubMed] [Google Scholar]
  49. Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993 Sep;73(3):413–423. doi: 10.1161/01.res.73.3.413. [DOI] [PubMed] [Google Scholar]
  50. Schorb W., Booz G. W., Dostal D. E., Conrad K. M., Chang K. C., Baker K. M. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res. 1993 Jun;72(6):1245–1254. doi: 10.1161/01.res.72.6.1245. [DOI] [PubMed] [Google Scholar]
  51. Schunkert H., Tang S. S., Litwin S. E., Diamant D., Riegger G., Dzau V. J., Ingelfinger J. R. Regulation of intrarenal and circulating renin-angiotensin systems in severe heart failure in the rat. Cardiovasc Res. 1993 May;27(5):731–735. doi: 10.1093/cvr/27.5.731. [DOI] [PubMed] [Google Scholar]
  52. Simon G., Abraham G., Altman S. Stimulation of vascular glycosaminoglycan synthesis by subpressor angiotensin II in rats. Hypertension. 1994 Jan;23(1 Suppl):I148–I151. doi: 10.1161/01.hyp.23.1_suppl.i148. [DOI] [PubMed] [Google Scholar]
  53. Simon G., Altman S. Subpressor angiotensin II is a bifunctional growth factor of vascular muscle in rats. J Hypertens. 1992 Oct;10(10):1165–1171. doi: 10.1097/00004872-199210000-00009. [DOI] [PubMed] [Google Scholar]
  54. Staroukine M., Devriendt J., Decoodt P., Verniory A. Relationships between plasma epinephrine, norepinephrine, dopamine and angiotensin II concentrations, renin activity, hemodynamic state and prognosis in acute heart failure. Acta Cardiol. 1984;39(2):131–138. [PubMed] [Google Scholar]
  55. Sun Y., Weber K. T. Angiotensin II and aldosterone receptor binding in rat heart and kidney: response to chronic angiotensin II or aldosterone administration. J Lab Clin Med. 1993 Oct;122(4):404–411. [PubMed] [Google Scholar]
  56. Takasaki I., Chobanian A. V., Sarzani R., Brecher P. Effect of hypertension on fibronectin expression in the rat aorta. J Biol Chem. 1990 Dec 15;265(35):21935–21939. [PubMed] [Google Scholar]
  57. Tan L. B., Jalil J. E., Pick R., Janicki J. S., Weber K. T. Cardiac myocyte necrosis induced by angiotensin II. Circ Res. 1991 Nov;69(5):1185–1195. doi: 10.1161/01.res.69.5.1185. [DOI] [PubMed] [Google Scholar]
  58. Thissen J. P., Ketelslegers J. M., Underwood L. E. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994 Feb;15(1):80–101. doi: 10.1210/edrv-15-1-80. [DOI] [PubMed] [Google Scholar]
  59. Timmermans P. B., Wong P. C., Chiu A. T., Herblin W. F., Benfield P., Carini D. J., Lee R. J., Wexler R. R., Saye J. A., Smith R. D. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993 Jun;45(2):205–251. [PubMed] [Google Scholar]
  60. Underwood L. E., Thissen J. P., Lemozy S., Ketelslegers J. M., Clemmons D. R. Hormonal and nutritional regulation of IGF-I and its binding proteins. Horm Res. 1994;42(4-5):145–151. doi: 10.1159/000184187. [DOI] [PubMed] [Google Scholar]
  61. Unger T., Gohlke P. Converting enzyme inhibitors in cardiovascular therapy: current status and future potential. Cardiovasc Res. 1994 Feb;28(2):146–158. doi: 10.1093/cvr/28.2.146. [DOI] [PubMed] [Google Scholar]
  62. Vari R. C., Zinn S., Verburg K. M., Freeman R. H. Renal nerves and the pathogenesis of angiotensin-induced hypertension. Hypertension. 1987 Apr;9(4):345–349. doi: 10.1161/01.hyp.9.4.345. [DOI] [PubMed] [Google Scholar]
  63. Ververis J. J., Ku L., Delafontaine P. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters. Circ Res. 1993 Jun;72(6):1285–1292. doi: 10.1161/01.res.72.6.1285. [DOI] [PubMed] [Google Scholar]
  64. Wåhlander H., Isgaard J., Jennische E., Friberg P. Left ventricular insulin-like growth factor I increases in early renal hypertension. Hypertension. 1992 Jan;19(1):25–32. doi: 10.1161/01.hyp.19.1.25. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES