Abstract
Shaker genes encode voltage-gated potassium channels (Kv). We have shown previously that genes from Shaker subfamilies Kv1.1, 1.2, 1.4 are expressed in rabbit kidney. Recent functional and molecular evidence indicate that the predominant potassium conductance of the kidney medullary cell line GRB-PAP1 is composed of Shaker-like potassium channels. We now report the molecular cloning and functional expression of a new Shaker-related voltage-gated potassium channel, rabKv1.3, that is expressed in rabbit brain and kidney medulla. The protein, predicted to be 513 amino acids long, is most closely related to the Kv1.3 family although it differs significantly from other members of that family at the amino terminus. In Xenopus oocytes, rabKv1.3 cRNA expresses a voltage activated K current with kinetic characteristics similar to other members of the Kv1.3 family. However, unlike previously described Shaker channels, it is sensitive to glibenclamide and its single channel conductance saturates. This is the first report of the functional expression of a voltage-gated K channel clone expressed in kidney. We conclude that rabKv1.3 is a novel member of the Shaker superfamily that may play an important role in renal potassium transport.
Full Text
The Full Text of this article is available as a PDF (325.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguilar-Bryan L., Nichols C. G., Wechsler S. W., Clement J. P., 4th, Boyd A. E., 3rd, González G., Herrera-Sosa H., Nguy K., Bryan J., Nelson D. A. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995 Apr 21;268(5209):423–426. doi: 10.1126/science.7716547. [DOI] [PubMed] [Google Scholar]
- Ahmad I., Korbmacher C., Segal A. S., Cheung P., Boulpaep E. L., Barnstable C. J. Mouse cortical collecting duct cells show nonselective cation channel activity and express a gene related to the cGMP-gated rod photoreceptor channel. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10262–10266. doi: 10.1073/pnas.89.21.10262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beech D. J., Zhang H., Nakao K., Bolton T. B. Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein. Br J Pharmacol. 1993 Oct;110(2):583–590. doi: 10.1111/j.1476-5381.1993.tb13850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
- Catterall W., Epstein P. N. Ion channels. Diabetologia. 1992 Dec;35 (Suppl 2):S23–S33. doi: 10.1007/BF00586276. [DOI] [PubMed] [Google Scholar]
- DeCoursey T. E., Jacobs E. R., Silver M. R. Potassium currents in rat type II alveolar epithelial cells. J Physiol. 1988 Jan;395:487–505. doi: 10.1113/jphysiol.1988.sp016931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desir G. V., Velázquez H. Identification of a novel K-channel gene (KC22) that is highly expressed in distal tubule of rabbit kidney. Am J Physiol. 1993 Jan;264(1 Pt 2):F128–F133. doi: 10.1152/ajprenal.1993.264.1.F128. [DOI] [PubMed] [Google Scholar]
- Edwards G., Weston A. H. KATP--fact or artefact? New thoughts on the mode of action of the potassium channel openers. Cardiovasc Res. 1994 Jun;28(6):735–745. doi: 10.1093/cvr/28.6.735. [DOI] [PubMed] [Google Scholar]
- Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
- Hopkins W. F., Demas V., Tempel B. L. Both N- and C-terminal regions contribute to the assembly and functional expression of homo- and heteromultimeric voltage-gated K+ channels. J Neurosci. 1994 Mar;14(3 Pt 1):1385–1393. doi: 10.1523/JNEUROSCI.14-03-01385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu Y. T., Molday R. S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature. 1993 Jan 7;361(6407):76–79. doi: 10.1038/361076a0. [DOI] [PubMed] [Google Scholar]
- Hunter M., Lopes A. G., Boulpaep E., Giebisch G. Regulation of single potassium ion channels from apical membrane of rabbit collecting tubule. Am J Physiol. 1986 Oct;251(4 Pt 2):F725–F733. doi: 10.1152/ajprenal.1986.251.4.F725. [DOI] [PubMed] [Google Scholar]
- Jamison R. L., Work J., Schafer J. A. New pathways for potassium transport in the kidney. Am J Physiol. 1982 Apr;242(4):F297–F312. doi: 10.1152/ajprenal.1982.242.4.F297. [DOI] [PubMed] [Google Scholar]
- Lee T. E., Philipson L. H., Kuznetsov A., Nelson D. J. Structural determinant for assembly of mammalian K+ channels. Biophys J. 1994 Mar;66(3 Pt 1):667–673. doi: 10.1016/s0006-3495(94)80840-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Light D. B., Schwiebert E. M., Karlson K. H., Stanton B. A. Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science. 1989 Jan 20;243(4889):383–385. doi: 10.1126/science.2463673. [DOI] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rae J. L. Ion channels in ocular epithelia. Invest Ophthalmol Vis Sci. 1993 Aug;34(9):2608–2612. [PubMed] [Google Scholar]
- Rettig J., Wunder F., Stocker M., Lichtinghagen R., Mastiaux F., Beckh S., Kues W., Pedarzani P., Schröter K. H., Ruppersberg J. P. Characterization of a Shaw-related potassium channel family in rat brain. EMBO J. 1992 Jul;11(7):2473–2486. doi: 10.1002/j.1460-2075.1992.tb05312.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rusch N. J., Stekiel W. J. Ionic channels of vascular smooth muscle in hypertension. Adv Exp Med Biol. 1991;308:1–7. doi: 10.1007/978-1-4684-6015-5_1. [DOI] [PubMed] [Google Scholar]
- Sharp P. A., Berk A. J., Berget S. M. Transcription maps of adenovirus. Methods Enzymol. 1980;65(1):750–768. doi: 10.1016/s0076-6879(80)65071-x. [DOI] [PubMed] [Google Scholar]
- Siegel G., Emden J., Wenzel K., Mironneau J., Stock G. Potassium channel activation in vascular smooth muscle. Adv Exp Med Biol. 1992;311:53–72. doi: 10.1007/978-1-4615-3362-7_5. [DOI] [PubMed] [Google Scholar]
- Stühmer W., Ruppersberg J. P., Schröter K. H., Sakmann B., Stocker M., Giese K. P., Perschke A., Baumann A., Pongs O. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 1989 Nov;8(11):3235–3244. doi: 10.1002/j.1460-2075.1989.tb08483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volk K. A., Husted R. F., Pruchno C. J., Stokes J. B. Functional and molecular evidence for Shaker-like K+ channels in rabbit renal papillary epithelial cell line. Am J Physiol. 1994 Oct;267(4 Pt 2):F671–F678. doi: 10.1152/ajprenal.1994.267.4.F671. [DOI] [PubMed] [Google Scholar]
- Yao X., Segal A. S., Welling P., Zhang X., McNicholas C. M., Engel D., Boulpaep E. L., Desir G. V. Primary structure and functional expression of a cGMP-gated potassium channel. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11711–11715. doi: 10.1073/pnas.92.25.11711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou H., Tate S. S., Palmer L. G. Primary structure and functional properties of an epithelial K channel. Am J Physiol. 1994 Mar;266(3 Pt 1):C809–C824. doi: 10.1152/ajpcell.1994.266.3.C809. [DOI] [PubMed] [Google Scholar]