Abstract
The orphan nuclear receptor, peroxisome proliferator-activated receptor (PPAR) gamma, is implicated in mediating expression of fat-specific genes and in activating the program of adipocyte differentiation. The potential for regulation of PPAR gamma gene expression in vivo is unknown. We cloned a partial mouse PPAR gamma cDNA and developed an RNase protection assay that permits simultaneous quantitation of mRNAs for both gamma l and gamma 2 isoforms encoded by the PPAR gamma gene. Probes for detection of adipocyte P2, the obese gene product, leptin, and 18S mRNAs were also employed. Both gamma l and gamma 2 mRNAs were abundantly expressed in adipose tissue. PPAR gamma 1 expression was also detected at lower levels in liver, spleen, and heart; whereas, gamma l and gamma 2 mRNA were expressed at low levels in skeletal muscle. Adipose tissue levels of gamma l and gamma 2 were not altered in two murine models of obesity (gold thioglucose and ob/ob), but were modestly increased in mice with toxigene-induced brown fat ablation uncoupling protein diphtheria toxin A mice. Fasting (12-48 h) was associated with an 80% fall in PPAR gamma 2 and a 50% fall in PPAR gamma mRNA levels in adipose tissue. Western blot analysis demonstrated a marked effect of fasting to reduce PPAR gamma protein levels in adipose tissue. Similar effects of fasting on PPAR gamma mRNAs were noted in all three models of obesity. Insulin-deficient (streptozotocin) diabetes suppressed adipose tissue gamma l and gamma 2 expression by 75% in normal mice with partial restoration during insulin treatment. Levels of adipose tissue PPAR gamma 2 mRNA were increased by 50% in normal mice exposed to a high fat diet. In obese uncoupling protein diphtheria toxin A mice, high fat feeding resulted in de novo induction of PPAR gamma 2 expression in liver. We conclude (a) PPAR gamma 2 mRNA expression is most abundant in adipocytes in normal mice, but lower level expression is seen in skeletal muscle; (b) expression of adipose tissue gamma1 or gamma2 mRNAs is increased in only one of the three models of obesity; (c) PPAR gamma 1 and gamma 2 expression is downregulated by fasting and insulin-deficient diabetes; and (d) exposure of mice to a high fat diet increases adipose tissue expression of PPAR gamma (in normal mice) and induces PPAR gamma 2 mRNA expression in liver (in obese mice). These findings demonstrate in vivo modulation of PPAR gamma mRNA levels over a fourfold range and provide an additional level of regulation for the control of adipocyte development and function.
Full Text
The Full Text of this article is available as a PDF (254.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ailhaud G., Grimaldi P., Négrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr. 1992;12:207–233. doi: 10.1146/annurev.nu.12.070192.001231. [DOI] [PubMed] [Google Scholar]
- Amri E. Z., Bonino F., Ailhaud G., Abumrad N. A., Grimaldi P. A. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J Biol Chem. 1995 Feb 3;270(5):2367–2371. doi: 10.1074/jbc.270.5.2367. [DOI] [PubMed] [Google Scholar]
- Chawla A., Schwarz E. J., Dimaculangan D. D., Lazar M. A. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology. 1994 Aug;135(2):798–800. doi: 10.1210/endo.135.2.8033830. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Christy R. J., Yang V. W., Ntambi J. M., Geiman D. E., Landschulz W. H., Friedman A. D., Nakabeppu Y., Kelly T. J., Lane M. D. Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev. 1989 Sep;3(9):1323–1335. doi: 10.1101/gad.3.9.1323. [DOI] [PubMed] [Google Scholar]
- Dreyer C., Krey G., Keller H., Givel F., Helftenbein G., Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992 Mar 6;68(5):879–887. doi: 10.1016/0092-8674(92)90031-7. [DOI] [PubMed] [Google Scholar]
- Flier J. S. The adipocyte: storage depot or node on the energy information superhighway? Cell. 1995 Jan 13;80(1):15–18. doi: 10.1016/0092-8674(95)90445-x. [DOI] [PubMed] [Google Scholar]
- Frederich R. C., Löllmann B., Hamann A., Napolitano-Rosen A., Kahn B. B., Lowell B. B., Flier J. S. Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest. 1995 Sep;96(3):1658–1663. doi: 10.1172/JCI118206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gearing K. L., Crickmore A., Gustafsson J. A. Structure of the mouse peroxisome proliferator activated receptor alpha gene. Biochem Biophys Res Commun. 1994 Feb 28;199(1):255–263. doi: 10.1006/bbrc.1994.1222. [DOI] [PubMed] [Google Scholar]
- Gulick T., Cresci S., Caira T., Moore D. D., Kelly D. P. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11012–11016. doi: 10.1073/pnas.91.23.11012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamann A., Flier J. S., Lowell B. B. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology. 1996 Jan;137(1):21–29. doi: 10.1210/endo.137.1.8536614. [DOI] [PubMed] [Google Scholar]
- Hu E., Tontonoz P., Spiegelman B. M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9856–9860. doi: 10.1073/pnas.92.21.9856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990 Oct 18;347(6294):645–650. doi: 10.1038/347645a0. [DOI] [PubMed] [Google Scholar]
- Issemann I., Prince R. A., Tugwood J. D., Green S. The peroxisome proliferator-activated receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol. 1993 Aug;11(1):37–47. doi: 10.1677/jme.0.0110037. [DOI] [PubMed] [Google Scholar]
- Lang C. H., Dobrescu C., Bagby G. J. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology. 1992 Jan;130(1):43–52. doi: 10.1210/endo.130.1.1727716. [DOI] [PubMed] [Google Scholar]
- Le Marchand-Brustel Y., Jeanrenaud B., Freychet P. Insulin binding and effects in isolated soleus muscle of lean and obese mice. Am J Physiol. 1978 Apr;234(4):E348–E358. doi: 10.1152/ajpendo.1978.234.4.E348. [DOI] [PubMed] [Google Scholar]
- Lehmann J. M., Moore L. B., Smith-Oliver T. A., Wilkison W. O., Willson T. M., Kliewer S. A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995 Jun 2;270(22):12953–12956. doi: 10.1074/jbc.270.22.12953. [DOI] [PubMed] [Google Scholar]
- Lin F. T., Lane M. D. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8757–8761. doi: 10.1073/pnas.91.19.8757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowell B. B., Flier J. S. Differentiation dependent biphasic regulation of adipsin gene expression by insulin and insulin-like growth factor-1 in 3T3-F442A adipocytes. Endocrinology. 1990 Dec;127(6):2898–2906. doi: 10.1210/endo-127-6-2898. [DOI] [PubMed] [Google Scholar]
- Lowell B. B., S-Susulic V., Hamann A., Lawitts J. A., Himms-Hagen J., Boyer B. B., Kozak L. P., Flier J. S. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature. 1993 Dec 23;366(6457):740–742. doi: 10.1038/366740a0. [DOI] [PubMed] [Google Scholar]
- MacDougald O. A., Cornelius P., Liu R., Lane M. D. Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta, and delta genes in fully-differentiated 3T3-L1 adipocytes. J Biol Chem. 1995 Jan 13;270(2):647–654. doi: 10.1074/jbc.270.2.647. [DOI] [PubMed] [Google Scholar]
- MacDougald O. A., Hwang C. S., Fan H., Lane M. D. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9034–9037. doi: 10.1073/pnas.92.20.9034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manson J. E., Willett W. C., Stampfer M. J., Colditz G. A., Hunter D. J., Hankinson S. E., Hennekens C. H., Speizer F. E. Body weight and mortality among women. N Engl J Med. 1995 Sep 14;333(11):677–685. doi: 10.1056/NEJM199509143331101. [DOI] [PubMed] [Google Scholar]
- Rodríguez J. C., Gil-Gómez G., Hegardt F. G., Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J Biol Chem. 1994 Jul 22;269(29):18767–18772. [PubMed] [Google Scholar]
- Saladin R., De Vos P., Guerre-Millo M., Leturque A., Girard J., Staels B., Auwerx J. Transient increase in obese gene expression after food intake or insulin administration. Nature. 1995 Oct 12;377(6549):527–529. doi: 10.1038/377527a0. [DOI] [PubMed] [Google Scholar]
- Schmidt A., Endo N., Rutledge S. J., Vogel R., Shinar D., Rodan G. A. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol Endocrinol. 1992 Oct;6(10):1634–1641. doi: 10.1210/mend.6.10.1333051. [DOI] [PubMed] [Google Scholar]
- Spiegelman B. M., Green H. Control of specific protein biosynthesis during the adipose conversion of 3T3 cells. J Biol Chem. 1980 Sep 25;255(18):8811–8818. [PubMed] [Google Scholar]
- Spiegelman B. M., Hotamisligil G. S. Through thick and thin: wasting, obesity, and TNF alpha. Cell. 1993 May 21;73(4):625–627. doi: 10.1016/0092-8674(93)90243-j. [DOI] [PubMed] [Google Scholar]
- Spiegelman B. M. Regulation of gene expression in the adipocyte: implications for obesity and proto-oncogene function. Trends Genet. 1988 Jul;4(7):203–207. doi: 10.1016/0168-9525(88)90077-7. [DOI] [PubMed] [Google Scholar]
- Steineger H. H., Sørensen H. N., Tugwood J. D., Skrede S., Spydevold O., Gautvik K. M. Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells. Hormonal modulation of fatty-acid-induced transcription. Eur J Biochem. 1994 Nov 1;225(3):967–974. doi: 10.1111/j.1432-1033.1994.0967b.x. [DOI] [PubMed] [Google Scholar]
- Tominaga M., Igarashi M., Daimon M., Eguchi H., Matsumoto M., Sekikawa A., Yamatani K., Sasaki H. Thiazolidinediones (AD-4833 and CS-045) improve hepatic insulin resistance in streptozotocin-induced diabetic rats. Endocr J. 1993 Jun;40(3):343–349. doi: 10.1507/endocrj.40.343. [DOI] [PubMed] [Google Scholar]
- Tontonoz P., Graves R. A., Budavari A. I., Erdjument-Bromage H., Lui M., Hu E., Tempst P., Spiegelman B. M. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res. 1994 Dec 25;22(25):5628–5634. doi: 10.1093/nar/22.25.5628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tontonoz P., Hu E., Devine J., Beale E. G., Spiegelman B. M. PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1995 Jan;15(1):351–357. doi: 10.1128/mcb.15.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tontonoz P., Hu E., Graves R. A., Budavari A. I., Spiegelman B. M. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994 May 15;8(10):1224–1234. doi: 10.1101/gad.8.10.1224. [DOI] [PubMed] [Google Scholar]
- Tontonoz P., Hu E., Spiegelman B. M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994 Dec 30;79(7):1147–1156. doi: 10.1016/0092-8674(94)90006-x. [DOI] [PubMed] [Google Scholar]
- Van Itallie T. B. Obesity: adverse effects on health and longevity. Am J Clin Nutr. 1979 Dec;32(12 Suppl):2723–2733. doi: 10.1093/ajcn/32.12.2723. [DOI] [PubMed] [Google Scholar]
- Weinstein S. P., Holand A., O'Boyle E., Haber R. S. Effects of thiazolidinediones on glucocorticoid-induced insulin resistance and GLUT4 glucose transporter expression in rat skeletal muscle. Metabolism. 1993 Oct;42(10):1365–1369. doi: 10.1016/0026-0495(93)90139-f. [DOI] [PubMed] [Google Scholar]
- Yu K., Bayona W., Kallen C. B., Harding H. P., Ravera C. P., McMahon G., Brown M., Lazar M. A. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem. 1995 Oct 13;270(41):23975–23983. doi: 10.1074/jbc.270.41.23975. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J. M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec 1;372(6505):425–432. doi: 10.1038/372425a0. [DOI] [PubMed] [Google Scholar]
- Zhu Y., Alvares K., Huang Q., Rao M. S., Reddy J. K. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem. 1993 Dec 25;268(36):26817–26820. [PubMed] [Google Scholar]
- Zhu Y., Qi C., Korenberg J. R., Chen X. N., Noya D., Rao M. S., Reddy J. K. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7921–7925. doi: 10.1073/pnas.92.17.7921. [DOI] [PMC free article] [PubMed] [Google Scholar]