Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jun 1;97(11):2576–2584. doi: 10.1172/JCI118706

Hormonal basis for the gender difference in epidermal barrier formation in the fetal rat. Acceleration by estrogen and delay by testosterone.

K Hanley 1, U Rassner 1, Y Jiang 1, D Vansomphone 1, D Crumrine 1, L Komüves 1, P M Elias 1, K R Feingold 1, M L Williams 1
PMCID: PMC507344  PMID: 8647951

Abstract

Previous studies have shown that ontogeny of the epidermal permeability barrier and lung occur in parallel in the fetal rat, and that pharmacologic agents, such as glucocorticoids and thyroid hormone, accelerate maturation at comparable developmental time points. Gender also influences lung maturation, i.e., males exhibit delayed development. Sex steroid hormones exert opposite effects on lung maturation, with estrogens accelerating and androgens inhibiting. In this study, we demonstrate that cutaneous barrier formation, measured as transepidermal water loss, is delayed in male fetal rats. Administration of estrogen to pregnant mothers accelerates fetal barrier development both morphologically and functionally. Competent barriers also form sooner in skin explants incubated in estrogen-supplemented media in vitro. In contrast, administration of dihydrotestosterone delays barrier formation both in vivo and in vitro. Finally, treatment of pregnant rats with the androgen antagonist flutamide eliminates the gender difference in barrier formation. These studies indicate that (a) estrogen accelerates and testosterone delays cutaneous barrier formation, (b) these hormones exert their effects directly on the skin, and (c) sex differences in rates of barrier development in vivo may be mediated by testosterone.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson I. Y., Bakowska J., McMillan E., King G. M. Accelerated fetal lung maturation by estrogen is associated with an epithelial-fibroblast interaction. In Vitro Cell Dev Biol. 1990 Aug;26(8):784–790. doi: 10.1007/BF02623620. [DOI] [PubMed] [Google Scholar]
  2. Adamson I. Y., King G. M. Sex-related differences in cellular composition and surfactant synthesis of developing fetal rat lungs. Am Rev Respir Dis. 1984 Jan;129(1):130–134. doi: 10.1164/arrd.1984.129.1.130. [DOI] [PubMed] [Google Scholar]
  3. Allen M. C., Donohue P. K., Dusman A. E. The limit of viability--neonatal outcome of infants born at 22 to 25 weeks' gestation. N Engl J Med. 1993 Nov 25;329(22):1597–1601. doi: 10.1056/NEJM199311253292201. [DOI] [PubMed] [Google Scholar]
  4. Andujo O., Rosenfeld C. R., Nielsen H. C., Parker C. R., Jr, Snyder J. M. Failure to detect a stimulatory effect of estradiol-17 beta on ovine fetal lung maturation. Pediatr Res. 1987 Aug;22(2):145–149. doi: 10.1203/00006450-198708000-00008. [DOI] [PubMed] [Google Scholar]
  5. Aszterbaum M., Feingold K. R., Menon G. K., Williams M. L. Glucocorticoids accelerate fetal maturation of the epidermal permeability barrier in the rat. J Clin Invest. 1993 Jun;91(6):2703–2708. doi: 10.1172/JCI116509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aszterbaum M., Menon G. K., Feingold K. R., Williams M. L. Ontogeny of the epidermal barrier to water loss in the rat: correlation of function with stratum corneum structure and lipid content. Pediatr Res. 1992 Apr;31(4 Pt 1):308–317. doi: 10.1203/00006450-199204000-00002. [DOI] [PubMed] [Google Scholar]
  7. Bläuer M., Vaalasti A., Pauli S. L., Ylikomi T., Joensuu T., Tuohimaa P. Location of androgen receptor in human skin. J Invest Dermatol. 1991 Aug;97(2):264–268. doi: 10.1111/1523-1747.ep12480373. [DOI] [PubMed] [Google Scholar]
  8. Bourbon J. R., Farrell P. M., Doucet E., Brown D. J., Valenza C. Biochemical maturation of fetal rat lung: a comprehensive study including surfactant determination. Biol Neonate. 1987;52(1):48–60. doi: 10.1159/000242684. [DOI] [PubMed] [Google Scholar]
  9. Downing D. T. Lipid and protein structures in the permeability barrier of mammalian epidermis. J Lipid Res. 1992 Mar;33(3):301–313. [PubMed] [Google Scholar]
  10. Elias P. M., Menon G. K. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res. 1991;24:1–26. doi: 10.1016/b978-0-12-024924-4.50005-5. [DOI] [PubMed] [Google Scholar]
  11. Floros J., Nielsen H. C., Torday J. S. Dihydrotestosterone blocks fetal lung fibroblast-pneumonocyte factor at a pretranslational level. J Biol Chem. 1987 Oct 5;262(28):13592–13598. [PubMed] [Google Scholar]
  12. Gross I., Wilson C. M., Ingleson L. D., Brehier A., Rooney S. A. The influence of hormones on the biochemical development of fetal rat lung in organ culture. I. Estrogen. Biochim Biophys Acta. 1979 Dec 18;575(3):375–383. doi: 10.1016/0005-2760(79)90106-1. [DOI] [PubMed] [Google Scholar]
  13. Hanley K., Rassner U., Elias P. M., Williams M. L., Feingold K. R. Epidermal barrier ontogenesis: maturation in serum-free media and acceleration by glucocorticoids and thyroid hormone but not selected growth factors. J Invest Dermatol. 1996 Mar;106(3):404–411. doi: 10.1111/1523-1747.ep12343405. [DOI] [PubMed] [Google Scholar]
  14. Harper I. S., Williams K., Lochner A. Lanthanum probing of cell membrane permeability in the rat heart: pathological versus artefactual alterations. J Electron Microsc Tech. 1990 Apr;14(4):357–366. doi: 10.1002/jemt.1060140411. [DOI] [PubMed] [Google Scholar]
  15. Hasselquist M. B., Goldberg N., Schroeter A., Spelsberg T. C. Isolation and characterization of the estrogen receptor in human skin. J Clin Endocrinol Metab. 1980 Jan;50(1):76–82. doi: 10.1210/jcem-50-1-76. [DOI] [PubMed] [Google Scholar]
  16. Hayward A. F. The permeability of the epithelium of the skin of fetal rats demonstrated with a lanthanum-containing solution. J Anat. 1983 Mar;136(Pt 2):379–388. [PMC free article] [PubMed] [Google Scholar]
  17. Khosla S. S., Smith G. J., Parks P. A., Rooney S. A. Effects of estrogen on fetal rabbit lung maturation: morphological and biochemical studies. Pediatr Res. 1981 Sep;15(9):1274–1281. doi: 10.1203/00006450-198109000-00010. [DOI] [PubMed] [Google Scholar]
  18. Khoury M. J., Marks J. S., McCarthy B. J., Zaro S. M. Factors affecting the sex differential in neonatal mortality: the role of respiratory distress syndrome. Am J Obstet Gynecol. 1985 Mar 15;151(6):777–782. doi: 10.1016/0002-9378(85)90518-6. [DOI] [PubMed] [Google Scholar]
  19. La Pine T. R., Jackson J. C., Bennett F. C. Outcome of infants weighing less than 800 grams at birth: 15 years' experience. Pediatrics. 1995 Sep;96(3 Pt 1):479–483. [PubMed] [Google Scholar]
  20. Lorenz J. M., Kleinman L. I., Kotagal U. R., Reller M. D. Water balance in very low-birth-weight infants: relationship to water and sodium intake and effect on outcome. J Pediatr. 1982 Sep;101(3):423–432. doi: 10.1016/s0022-3476(82)80078-4. [DOI] [PubMed] [Google Scholar]
  21. Lubahn D. B., Moyer J. S., Golding T. S., Couse J. F., Korach K. S., Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11162–11166. doi: 10.1073/pnas.90.23.11162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maurer A., Micheli J. L., Schütz Y., Freymond D., Jéquier E. Transepidermal water loss and resting energy expenditure in preterm infants. Helv Paediatr Acta. 1984 Dec;39(5-6):405–418. [PubMed] [Google Scholar]
  23. McMillan E. M., King G. M., Adamson I. Y. Sex hormones influence growth and surfactant production in fetal lung explants. Exp Lung Res. 1989 Mar;15(2):167–179. doi: 10.3109/01902148909087851. [DOI] [PubMed] [Google Scholar]
  24. Mendelson C. R., Boggaram V. Hormonal control of the surfactant system in fetal lung. Annu Rev Physiol. 1991;53:415–440. doi: 10.1146/annurev.ph.53.030191.002215. [DOI] [PubMed] [Google Scholar]
  25. Nielsen H. C., Kirk W. O., Sweezey N., Torday J. S. Coordination of growth and differentiation in the fetal lung. Exp Cell Res. 1990 May;188(1):89–96. doi: 10.1016/0014-4827(90)90281-e. [DOI] [PubMed] [Google Scholar]
  26. Nielsen H. C. Testosterone regulation of sex differences in fetal lung development. Proc Soc Exp Biol Med. 1992 Apr;199(4):446–452. doi: 10.3181/00379727-199-43379. [DOI] [PubMed] [Google Scholar]
  27. Nielsen H. C. The development of surfactant synthesis in fetal rabbit lung organ culture exhibits a sex dimorphism. Biochim Biophys Acta. 1986 Sep 4;883(2):373–379. doi: 10.1016/0304-4165(86)90330-2. [DOI] [PubMed] [Google Scholar]
  28. Nielsen H. C., Torday J. S. Anatomy of fetal rabbit gonads and the sexing of fetal rabbits. Lab Anim. 1983 Apr;17(2):148–150. doi: 10.1258/002367783780959411. [DOI] [PubMed] [Google Scholar]
  29. Nielsen H. C., Zinman H. M., Torday J. S. Dihydrotestosterone inhibits fetal rabbit pulmonary surfactant production. J Clin Invest. 1982 Mar;69(3):611–616. doi: 10.1172/JCI110488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Puri C. P., Garfield R. E. Changes in hormone levels and gap junctions in the rat uterus during pregnancy and parturition. Biol Reprod. 1982 Nov;27(4):967–975. doi: 10.1095/biolreprod27.4.967. [DOI] [PubMed] [Google Scholar]
  31. Risco C., Romero C., Bosch M. A., Pinto da Silva P. Type II pneumocytes revisited: intracellular membranous systems, surface characteristics, and lamellar body secretion. Lab Invest. 1994 Mar;70(3):407–417. [PubMed] [Google Scholar]
  32. Rooney S. A., Young S. L., Mendelson C. R. Molecular and cellular processing of lung surfactant. FASEB J. 1994 Sep;8(12):957–967. doi: 10.1096/fasebj.8.12.8088461. [DOI] [PubMed] [Google Scholar]
  33. Schellhase D. E., Emrie P. A., Fisher J. H., Shannon J. M. Ontogeny of surfactant apoproteins in the rat. Pediatr Res. 1989 Sep;26(3):167–174. doi: 10.1203/00006450-198909000-00001. [DOI] [PubMed] [Google Scholar]
  34. Schurer N. Y., Elias P. M. The biochemistry and function of stratum corneum lipids. Adv Lipid Res. 1991;24:27–56. doi: 10.1016/b978-0-12-024924-4.50006-7. [DOI] [PubMed] [Google Scholar]
  35. Shimizu H., Miyamura K., Kuroki Y. Appearance of surfactant proteins, SP-A and SP-B, in developing rat lung and the effects of in vivo dexamethasone treatment. Biochim Biophys Acta. 1991 Jan 4;1081(1):53–60. doi: 10.1016/0005-2760(91)90249-h. [DOI] [PubMed] [Google Scholar]
  36. Thuresson-Klein A., Moawad A. H., Hedqvist P. Estrogen stimulates formation of lamellar bodies and release of surfactant in the rat fetal lung. Am J Obstet Gynecol. 1985 Feb 15;151(4):506–514. doi: 10.1016/0002-9378(85)90279-0. [DOI] [PubMed] [Google Scholar]
  37. Torday J. S. Androgens delay human fetal lung maturation in vitro. Endocrinology. 1990 Jun;126(6):3240–3244. doi: 10.1210/endo-126-6-3240. [DOI] [PubMed] [Google Scholar]
  38. Torday J. S., Nielsen H. C. The sex difference in fetal lung surfactant production. Exp Lung Res. 1987;12(1):1–19. doi: 10.3109/01902148709068811. [DOI] [PubMed] [Google Scholar]
  39. Uzuka M., Nakajima K., Ohta S., Mori Y. The mechanism of estrogen-induced increase in hyaluronic acid biosynthesis, with special reference to estrogen receptor in the mouse skin. Biochim Biophys Acta. 1980 Jan 17;627(2):199–206. doi: 10.1016/0304-4165(80)90321-9. [DOI] [PubMed] [Google Scholar]
  40. Van Golde L. M., Batenburg J. J., Robertson B. The pulmonary surfactant system: biochemical aspects and functional significance. Physiol Rev. 1988 Apr;68(2):374–455. doi: 10.1152/physrev.1988.68.2.374. [DOI] [PubMed] [Google Scholar]
  41. Vernon H. J., Lane A. T., Wischerath L. J., Davis J. M., Menegus M. A. Semipermeable dressing and transepidermal water loss in premature infants. Pediatrics. 1990 Sep;86(3):357–362. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES