Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jun 15;97(12):2722–2727. doi: 10.1172/JCI118726

Human natural killer cells produce abundant macrophage inflammatory protein-1 alpha in response to monocyte-derived cytokines.

E M Bluman 1, K J Bartynski 1, B R Avalos 1, M A Caligiuri 1
PMCID: PMC507364  PMID: 8675682

Abstract

Once infected by obligate intracellular pathogens, monocytes/macrophages release cytokines that activate natural killer (NK) cells. NK cells in turn produce and secrete monocyte/macrophage activating factors such as interferongamma (IFN-gamma), which are important in the early control of these infections. Here we demonstrate that human NK cells are potent producers of another monocyte/macrophage-activating factor, macrophage inflammatory protein-1 alpha (MIP-1 alpha). Fresh NK cells produce negligible amounts of MIP-1 alpha after stimulation with the monocyte-derived cytokines IL-12, TNF-alpha, IL-1 beta, or IL-10, while stimulation with IL-15 alone results in modest MIP-1 alpha production. Abundant NK cell production MIP-1 alpha is seen after costimulation with IL-12 and IL-15, and is dose-dependent. Combinations of IL-12, with TNF-alpha, IL-1 beta, or IL-10 are substantially less effective inducers of MIP-1 alpha production by NK cells. NK cell MIP-1 alpha mRNA transcripts were detectable within 1 h after costimulation with IL-12 plus IL-15 and steadily increased over 24 h, with a concomitant increase in protein production detectable at 12 h. Resting NK cells constitutively express mRNA transcript for a MIP-1 alpha receptor, and costimulation with IL-12 and IL-15 upregulates its level of expression. Equilibrium binding studies with radioiodinated MIP-1 alpha were consistent with the induction of a single class of high affinity MIP-1 alpha receptors on NK cells costimulated with IL-12 and IL-15. Addition of exogenous MIP-1 alpha to resting NK cells did not enhance cytokine production, but did increase NK cytotoxic activity. The requirement for IL-15 as a critical cofactor for NK cell production MIP-1 alpha suggests a potentially unique role for this monocyte-derived cytokine in combination with IL-12. As MIP-1 alpha is known to potentiate the action of IFN-gamma on monocytes and to suppress human immunodeficiency virus replication, the NK cell's production of MIP-1 alpha may be important during the innate immune response to infection.

Full Text

The Full Text of this article is available as a PDF (263.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. B., Wong H. L., Guyre P. M., Simon G. L., Wahl S. M. Association of circulating receptor Fc gamma RIII-positive monocytes in AIDS patients with elevated levels of transforming growth factor-beta. J Clin Invest. 1991 May;87(5):1773–1779. doi: 10.1172/JCI115196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avalos B. R., Bartynski K. J., Elder P. J., Kotur M. S., Burton W. G., Wilkie N. M. The active monomeric form of macrophage inflammatory protein-1 alpha interacts with high- and low-affinity classes of receptors on human hematopoietic cells. Blood. 1994 Sep 15;84(6):1790–1801. [PubMed] [Google Scholar]
  3. Baiocchi R. A., Ross M. E., Tan J. C., Chou C. C., Sullivan L., Haldar S., Monne M., Seiden M. V., Narula S. K., Sklar J. Lymphomagenesis in the SCID-hu mouse involves abundant production of human interleukin-10. Blood. 1995 Feb 15;85(4):1063–1074. [PubMed] [Google Scholar]
  4. Bancroft G. J. The role of natural killer cells in innate resistance to infection. Curr Opin Immunol. 1993 Aug;5(4):503–510. doi: 10.1016/0952-7915(93)90030-v. [DOI] [PubMed] [Google Scholar]
  5. Bernstein Z. P., Porter M. M., Gould M., Lipman B., Bluman E. M., Stewart C. C., Hewitt R. G., Fyfe G., Poiesz B., Caligiuri M. A. Prolonged administration of low-dose interleukin-2 in human immunodeficiency virus-associated malignancy results in selective expansion of innate immune effectors without significant clinical toxicity. Blood. 1995 Nov 1;86(9):3287–3294. [PubMed] [Google Scholar]
  6. Blum S., Forsdyke R. E., Forsdyke D. R. Three human homologs of a murine gene encoding an inhibitor of stem cell proliferation. DNA Cell Biol. 1990 Oct;9(8):589–602. doi: 10.1089/dna.1990.9.589. [DOI] [PubMed] [Google Scholar]
  7. Caligiuri M. A., Zmuidzinas A., Manley T. J., Levine H., Smith K. A., Ritz J. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med. 1990 May 1;171(5):1509–1526. doi: 10.1084/jem.171.5.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carson W. E., Giri J. G., Lindemann M. J., Linett M. L., Ahdieh M., Paxton R., Anderson D., Eisenmann J., Grabstein K., Caligiuri M. A. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994 Oct 1;180(4):1395–1403. doi: 10.1084/jem.180.4.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carson W. E., Lindemann M. J., Baiocchi R., Linett M., Tan J. C., Chou C. C., Narula S., Caligiuri M. A. The functional characterization of interleukin-10 receptor expression on human natural killer cells. Blood. 1995 Jun 15;85(12):3577–3585. [PubMed] [Google Scholar]
  10. Carson W. E., Ross M. E., Baiocchi R. A., Marien M. J., Boiani N., Grabstein K., Caligiuri M. A. Endogenous production of interleukin 15 by activated human monocytes is critical for optimal production of interferon-gamma by natural killer cells in vitro. J Clin Invest. 1995 Dec;96(6):2578–2582. doi: 10.1172/JCI118321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995 Dec 15;270(5243):1811–1815. doi: 10.1126/science.270.5243.1811. [DOI] [PubMed] [Google Scholar]
  12. Cook D. N., Beck M. A., Coffman T. M., Kirby S. L., Sheridan J. F., Pragnell I. B., Smithies O. Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science. 1995 Sep 15;269(5230):1583–1585. doi: 10.1126/science.7667639. [DOI] [PubMed] [Google Scholar]
  13. Fahey T. J., 3rd, Tracey K. J., Tekamp-Olson P., Cousens L. S., Jones W. G., Shires G. T., Cerami A., Sherry B. Macrophage inflammatory protein 1 modulates macrophage function. J Immunol. 1992 May 1;148(9):2764–2769. [PubMed] [Google Scholar]
  14. Gong J. H., Maki G., Klingemann H. G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994 Apr;8(4):652–658. [PubMed] [Google Scholar]
  15. Heremans H., Dillen C., van Damme J., Billiau A. Essential role for natural killer cells in the lethal lipopolysaccharide-induced Shwartzman-like reaction in mice. Eur J Immunol. 1994 May;24(5):1155–1160. doi: 10.1002/eji.1830240522. [DOI] [PubMed] [Google Scholar]
  16. Maghazachi A. A., al-Aoukaty A., Schall T. J. C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins. J Immunol. 1994 Dec 1;153(11):4969–4977. [PubMed] [Google Scholar]
  17. Matos M. E., Schnier G. S., Beecher M. S., Ashman L. K., William D. E., Caligiuri M. A. Expression of a functional c-kit receptor on a subset of natural killer cells. J Exp Med. 1993 Sep 1;178(3):1079–1084. doi: 10.1084/jem.178.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  19. Nakarai T., Robertson M. J., Streuli M., Wu Z., Ciardelli T. L., Smith K. A., Ritz J. Interleukin 2 receptor gamma chain expression on resting and activated lymphoid cells. J Exp Med. 1994 Jul 1;180(1):241–251. doi: 10.1084/jem.180.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neote K., DiGregorio D., Mak J. Y., Horuk R., Schall T. J. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell. 1993 Feb 12;72(3):415–425. doi: 10.1016/0092-8674(93)90118-a. [DOI] [PubMed] [Google Scholar]
  21. Scott P., Trinchieri G. The role of natural killer cells in host-parasite interactions. Curr Opin Immunol. 1995 Feb;7(1):34–40. doi: 10.1016/0952-7915(95)80026-3. [DOI] [PubMed] [Google Scholar]
  22. Siderovski D. P., Blum S., Forsdyke R. E., Forsdyke D. R. A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes. DNA Cell Biol. 1990 Oct;9(8):579–587. doi: 10.1089/dna.1990.9.579. [DOI] [PubMed] [Google Scholar]
  23. Tripp C. S., Wolf S. F., Unanue E. R. Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3725–3729. doi: 10.1073/pnas.90.8.3725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Voss S. D., Sondel P. M., Robb R. J. Characterization of the interleukin 2 receptors (IL-2R) expressed on human natural killer cells activated in vivo by IL-2: association of the p64 IL-2R gamma chain with the IL-2R beta chain in functional intermediate-affinity IL-2R. J Exp Med. 1992 Aug 1;176(2):531–541. doi: 10.1084/jem.176.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wolpe S. D., Davatelis G., Sherry B., Beutler B., Hesse D. G., Nguyen H. T., Moldawer L. L., Nathan C. F., Lowry S. F., Cerami A. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med. 1988 Feb 1;167(2):570–581. doi: 10.1084/jem.167.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wysocka M., Kubin M., Vieira L. Q., Ozmen L., Garotta G., Scott P., Trinchieri G. Interleukin-12 is required for interferon-gamma production and lethality in lipopolysaccharide-induced shock in mice. Eur J Immunol. 1995 Mar;25(3):672–676. doi: 10.1002/eji.1830250307. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES