Abstract
The arcades are long, branched renal tubules which connect deep and mid-cortical nephrons to cortical collecting ducts in the renal cortex. Because they are inaccessible by standard physiological techniques, their functions are poorly understood. In this paper, we demonstrate that the arcades are a site of expression of two proteins, aquaporin-2 (the vasopressin-regulated water channel) and the V2 vasopressin receptor, that are important to regulated water transport in the kidney. Using a peptide-derived polyclonal antibody to aquaporin-2, quantitative ELISA in microdissected segments showed that aquaporin-2 is highly expressed in arcades and that the expression is increased in response to restriction of fluid intake. Immunocytochemistry revealed abundant aquaporin-2 labeling of structures in the cortical labyrinth in a pattern similar to that of the Na(+)-Ca2+ exchanger and kallikrein, marker proteins expressed in arcades but not in cortical collecting ducts. RT-PCR experiments demonstrated substantial aquaporin-2 and V2 receptor mRNA in microdissected arcades. In situ hybridization, using 35S-labeled antisense cRNA probes for the V2 receptor demonstrated strong labeling of both arcades and cortical collecting ducts. Thus, these results indicate that the arcades contain the specific proteins associated with vasopressin-regulated water transport, and may be a heretofore unrecognized site of free water absorption.
Full Text
The Full Text of this article is available as a PDF (678.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews P. M., Coffey A. K. A technique to reduce fixation artifacts to kidney proximal tubules. Kidney Int. 1984 Jun;25(6):964–968. doi: 10.1038/ki.1984.118. [DOI] [PubMed] [Google Scholar]
- Birnbaumer M., Seibold A., Gilbert S., Ishido M., Barberis C., Antaramian A., Brabet P., Rosenthal W. Molecular cloning of the receptor for human antidiuretic hormone. Nature. 1992 May 28;357(6376):333–335. doi: 10.1038/357333a0. [DOI] [PubMed] [Google Scholar]
- DiGiovanni S. R., Nielsen S., Christensen E. I., Knepper M. A. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8984–8988. doi: 10.1073/pnas.91.19.8984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EPSTEIN F. H., KLEEMAN C. R., HENDRIKX A. The influence of bodily hydration on the renal concentrating process. J Clin Invest. 1957 May;36(5):629–634. doi: 10.1172/JCI103462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ecelbarger C. A., Chou C. L., Lolait S. J., Knepper M. A., DiGiovanni S. R. Evidence for dual signaling pathways for V2 vasopressin receptor in rat inner medullary collecting duct. Am J Physiol. 1996 Apr;270(4 Pt 2):F623–F633. doi: 10.1152/ajprenal.1996.270.4.F623. [DOI] [PubMed] [Google Scholar]
- Fushimi K., Uchida S., Hara Y., Hirata Y., Marumo F., Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993 Feb 11;361(6412):549–552. doi: 10.1038/361549a0. [DOI] [PubMed] [Google Scholar]
- GOTTSCHALK C. W., MYLLE M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol. 1959 Apr;196(4):927–936. doi: 10.1152/ajplegacy.1959.196.4.927. [DOI] [PubMed] [Google Scholar]
- Hayashi M., Sasaki S., Tsuganezawa H., Monkawa T., Kitajima W., Konishi K., Fushimi K., Marumo F., Saruta T. Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J Clin Invest. 1994 Nov;94(5):1778–1783. doi: 10.1172/JCI117525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imai M. The connecting tubule: a functional subdivision of the rabbit distal nephron segments. Kidney Int. 1979 Apr;15(4):346–356. doi: 10.1038/ki.1979.46. [DOI] [PubMed] [Google Scholar]
- Imbert-Teboul M., Charbardès D., Morel F. Vasopressin and catecholamines sites of action along rabbit, mouse and rat nephron. Contrib Nephrol. 1980;21:41–47. doi: 10.1159/000385245. [DOI] [PubMed] [Google Scholar]
- JONES R. V., DE WARDENER H. E. Urine concentration after fluid deprivation or pitressin tannate in oil. Br Med J. 1956 Feb 4;1(4961):271–274. doi: 10.1136/bmj.1.4961.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Juhaszova M., Ambesi A., Lindenmayer G. E., Bloch R. J., Blaustein M. P. Na(+)-Ca2+ exchanger in arteries: identification by immunoblotting and immunofluorescence microscopy. Am J Physiol. 1994 Jan;266(1 Pt 1):C234–C242. doi: 10.1152/ajpcell.1994.266.1.C234. [DOI] [PubMed] [Google Scholar]
- Knepper M., Burg M. Organization of nephron function. Am J Physiol. 1983 Jun;244(6):F579–F589. doi: 10.1152/ajprenal.1983.244.6.F579. [DOI] [PubMed] [Google Scholar]
- Lankford S. P., Chou C. L., Terada Y., Wall S. M., Wade J. B., Knepper M. A. Regulation of collecting duct water permeability independent of cAMP-mediated AVP response. Am J Physiol. 1991 Sep;261(3 Pt 2):F554–F566. doi: 10.1152/ajprenal.1991.261.3.F554. [DOI] [PubMed] [Google Scholar]
- Lolait S. J., O'Carroll A. M., McBride O. W., Konig M., Morel A., Brownstein M. J. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature. 1992 May 28;357(6376):336–339. doi: 10.1038/357336a0. [DOI] [PubMed] [Google Scholar]
- Ma T., Hasegawa H., Skach W. R., Frigeri A., Verkman A. S. Expression, functional analysis, and in situ hybridization of a cloned rat kidney collecting duct water channel. Am J Physiol. 1994 Jan;266(1 Pt 1):C189–C197. doi: 10.1152/ajpcell.1994.266.1.C189. [DOI] [PubMed] [Google Scholar]
- Maeda Y., Smith B. L., Agre P., Knepper M. A. Quantification of Aquaporin-CHIP water channel protein in microdissected renal tubules by fluorescence-based ELISA. J Clin Invest. 1995 Jan;95(1):422–428. doi: 10.1172/JCI117672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
- Morel F., Chabardès D., Imbert M. Functional segmentation of the rabbit distal tubule by microdetermination of hormone-dependent adenylate cyclase activity. Kidney Int. 1976 Mar;9(3):264–277. doi: 10.1038/ki.1976.29. [DOI] [PubMed] [Google Scholar]
- Morel F., Doucet A. Hormonal control of kidney functions at the cell level. Physiol Rev. 1986 Apr;66(2):377–468. doi: 10.1152/physrev.1986.66.2.377. [DOI] [PubMed] [Google Scholar]
- Nielsen S., Chou C. L., Marples D., Christensen E. I., Kishore B. K., Knepper M. A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013–1017. doi: 10.1073/pnas.92.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen S., DiGiovanni S. R., Christensen E. I., Knepper M. A., Harris H. W. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11663–11667. doi: 10.1073/pnas.90.24.11663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostrowski N. L., Lolait S. J., Bradley D. J., O'Carroll A. M., Brownstein M. J., Young W. S., 3rd Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology. 1992 Jul;131(1):533–535. doi: 10.1210/endo.131.1.1535312. [DOI] [PubMed] [Google Scholar]
- Ostrowski N. L., Young W. S., 3rd, Knepper M. A., Lolait S. J. Expression of vasopressin V1a and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology. 1993 Oct;133(4):1849–1859. doi: 10.1210/endo.133.4.8404628. [DOI] [PubMed] [Google Scholar]
- Oza N. B., Amin V. M., McGregor R. K., Scicli A. G., Carretero O. A. Isolation of rat urinary kallikrein and properties of its antibodies. Biochem Pharmacol. 1976 Jul 15;25(14):1607–1612. doi: 10.1016/0006-2952(76)90471-8. [DOI] [PubMed] [Google Scholar]
- Peränen J., Rikkonen M., Käriäinen L. A method for exposing hidden antigenic sites in paraformaldehyde-fixed cultured cells, applied to initially unreactive antibodies. J Histochem Cytochem. 1993 Mar;41(3):447–454. doi: 10.1177/41.3.8429208. [DOI] [PubMed] [Google Scholar]
- Sabolić I., Katsura T., Verbavatz J. M., Brown D. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol. 1995 Feb;143(3):165–175. doi: 10.1007/BF00233445. [DOI] [PubMed] [Google Scholar]
- Terada Y., Tomita K., Nonoguchi H., Yang T., Marumo F. Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction. J Clin Invest. 1993 Nov;92(5):2339–2345. doi: 10.1172/JCI116838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WIRZ H. Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv Physiol Pharmacol Acta. 1956;14(3):353–362. [PubMed] [Google Scholar]
- Woodhall P. B., Tisher C. C. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J Clin Invest. 1973 Dec;52(12):3095–3108. doi: 10.1172/JCI107509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto T., Sasaki S., Fushimi K., Ishibashi K., Yaoita E., Kawasaki K., Marumo F., Kihara I. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol. 1995 Jun;268(6 Pt 1):C1546–C1551. doi: 10.1152/ajpcell.1995.268.6.C1546. [DOI] [PubMed] [Google Scholar]