Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jun 15;97(12):2807–2814. doi: 10.1172/JCI118736

Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet.

J M Sands 1, M Naruse 1, J D Jacobs 1, J N Wilcox 1, J D Klein 1
PMCID: PMC507374  PMID: 8675692

Abstract

Low-protein diets cause a urinary concentrating defect in rats and humans. Previously, we showed that feeding rats a low (8%) protein diet induces a change in urea transport in initial inner medullary collecting ducts (IMCDs) which could contribute to the concentrating defect. Now, we test whether decreased osmotic water permeability (Pf) contributes to the concentrating defect by measuring Pf in perfused initial and terminal IMCDs from rats fed 18 or 8% protein for 2 wk. In terminal IMCDs, arginine vasopressin (AVP)-stimulated osmotic water permeability was significantly reduced in rats fed 8% protein compared to rats fed 18% protein. In initial IMCDs, AVP-stimulated osmotic water permeability was unaffected by dietary protein. Thus, AVP-stimulated osmotic water permeability is significantly reduced in terminal IMCDs but not in initial IMCDs. Next, we determined if the amount of immunoreactive aquaporin-2 (AQP2, the AVP-regulated water channel) or AQP3 protein was altered. Protein was isolated from base or tip regions of rat inner medulla and Western analysis performed using polyclonal antibodies to rat AQP2 or AQP3 (courtesy of Dr. M.A. Knepper, National Institutes of Health, Bethesda, MD). In rats fed 8% protein (compared to rats fed 18% protein): (a) AQP2 decreases significantly in both membrane and vesicle fractions from the tip; (b) AQP2 is unchanged in the base; and (c) AQP3 is unchanged. Together, the results suggest that the decrease in AVP-stimulated osmotic water permeability results, at least in part, in the decrease in AQP2 protein. We conclude that water reabsorption, like urea reabsorption, responds to dietary protein restriction in a manner that would limit urine concentrating capacity.

Full Text

The Full Text of this article is available as a PDF (360.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agre P., Preston G. M., Smith B. L., Jung J. S., Raina S., Moon C., Guggino W. B., Nielsen S. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol. 1993 Oct;265(4 Pt 2):F463–F476. doi: 10.1152/ajprenal.1993.265.4.F463. [DOI] [PubMed] [Google Scholar]
  2. Al-Zahid G., Schafer J. A., Troutman S. L., Andreoli T. E. Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel ADH-sensitive pathways for water and solute diffusion in luminal plasma membranes. J Membr Biol. 1977 Feb 24;31(1-2):103–129. doi: 10.1007/BF01869401. [DOI] [PubMed] [Google Scholar]
  3. Ashkar Z. M., Martial S., Isozaki T., Price S. R., Sands J. M. Urea transport in initial IMCD of rats fed a low-protein diet: functional properties and mRNA abundance. Am J Physiol. 1995 Jun;268(6 Pt 2):F1218–F1223. doi: 10.1152/ajprenal.1995.268.6.F1218. [DOI] [PubMed] [Google Scholar]
  4. CRAWFORD J. D., DOYLE A. P., PROBST J. H. Service of urea in renal water conservation. Am J Physiol. 1959 Mar;196(3):545–548. doi: 10.1152/ajplegacy.1959.196.3.545. [DOI] [PubMed] [Google Scholar]
  5. DiGiovanni S. R., Nielsen S., Christensen E. I., Knepper M. A. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8984–8988. doi: 10.1073/pnas.91.19.8984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EPSTEIN F. H., KLEEMAN C. R., PURSEL S., HENDRIKX A. The effect of feeding protein and urea on the renal concentrating process. J Clin Invest. 1957 May;36(5):635–641. doi: 10.1172/JCI103463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ecelbarger C. A., Terris J., Frindt G., Echevarria M., Marples D., Nielsen S., Knepper M. A. Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol. 1995 Nov;269(5 Pt 2):F663–F672. doi: 10.1152/ajprenal.1995.269.5.F663. [DOI] [PubMed] [Google Scholar]
  8. Echevarria M., Windhager E. E., Tate S. S., Frindt G. Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10997–11001. doi: 10.1073/pnas.91.23.10997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frigeri A., Gropper M. A., Turck C. W., Verkman A. S. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4328–4331. doi: 10.1073/pnas.92.10.4328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fushimi K., Sasaki S., Yamamoto T., Hayashi M., Furukawa T., Uchida S., Kuwahara M., Ishibashi K., Kawasaki M., Kihara I. Functional characterization and cell immunolocalization of AQP-CD water channel in kidney collecting duct. Am J Physiol. 1994 Oct;267(4 Pt 2):F573–F582. doi: 10.1152/ajprenal.1994.267.4.F573. [DOI] [PubMed] [Google Scholar]
  11. Fushimi K., Uchida S., Hara Y., Hirata Y., Marumo F., Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993 Feb 11;361(6412):549–552. doi: 10.1038/361549a0. [DOI] [PubMed] [Google Scholar]
  12. HENDRIKX A., EPSTEIN F. H. Effect of feeding protein and urea on renal concentrating ability in the rat. Am J Physiol. 1958 Dec;195(3):539–542. doi: 10.1152/ajplegacy.1958.195.3.539. [DOI] [PubMed] [Google Scholar]
  13. Han J. S., Thompson K. A., Chou C. L., Knepper M. A. Experimental tests of three-dimensional model of urinary concentrating mechanism. J Am Soc Nephrol. 1992 Jun;2(12):1677–1688. doi: 10.1681/ASN.V2121677. [DOI] [PubMed] [Google Scholar]
  14. Hayashi M., Sasaki S., Tsuganezawa H., Monkawa T., Kitajima W., Konishi K., Fushimi K., Marumo F., Saruta T. Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J Clin Invest. 1994 Nov;94(5):1778–1783. doi: 10.1172/JCI117525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ishibashi K., Sasaki S., Fushimi K., Uchida S., Kuwahara M., Saito H., Furukawa T., Nakajima K., Yamaguchi Y., Gojobori T. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6269–6273. doi: 10.1073/pnas.91.14.6269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Isozaki T., Gillin A. G., Swanson C. E., Sands J. M. Protein restriction sequentially induces new urea transport processes in rat initial IMCD. Am J Physiol. 1994 May;266(5 Pt 2):F756–F761. doi: 10.1152/ajprenal.1994.266.5.F756. [DOI] [PubMed] [Google Scholar]
  17. Isozaki T., Lea J. P., Tumlin J. A., Sands J. M. Sodium-dependent net urea transport in rat initial inner medullary collecting ducts. J Clin Invest. 1994 Oct;94(4):1513–1517. doi: 10.1172/JCI117491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Isozaki T., Verlander J. W., Sands J. M. Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J Clin Invest. 1993 Nov;92(5):2448–2457. doi: 10.1172/JCI116852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klahr S., Alleyne G. A. Effects of chronic protein-calorie malnutrition on the kidney. Kidney Int. 1973 Mar;3(3):129–141. doi: 10.1038/ki.1973.21. [DOI] [PubMed] [Google Scholar]
  20. Knepper M. A., Good D. W., Burg M. B. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am J Physiol. 1985 Dec;249(6 Pt 2):F870–F877. doi: 10.1152/ajprenal.1985.249.6.F870. [DOI] [PubMed] [Google Scholar]
  21. Kudo L. H., Shimizu M. H., Seguro A. C., Rocha A. S. Renal concentrating defect in protein malnutrition: the role of the thick ascending limb of Henle and inner medullary collecting duct. Nephron. 1991;57(2):156–163. doi: 10.1159/000186243. [DOI] [PubMed] [Google Scholar]
  22. Kuwahara M., Fushimi K., Terada Y., Bai L., Marumo F., Sasaki S. cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J Biol Chem. 1995 May 5;270(18):10384–10387. doi: 10.1074/jbc.270.18.10384. [DOI] [PubMed] [Google Scholar]
  23. LEVINSKY N. G., BERLINER R. W. The role of urea in the urine concentrating mechanism. J Clin Invest. 1959 May;38(5):741–748. doi: 10.1172/JCI103854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lankford S. P., Chou C. L., Terada Y., Wall S. M., Wade J. B., Knepper M. A. Regulation of collecting duct water permeability independent of cAMP-mediated AVP response. Am J Physiol. 1991 Sep;261(3 Pt 2):F554–F566. doi: 10.1152/ajprenal.1991.261.3.F554. [DOI] [PubMed] [Google Scholar]
  25. Ma T., Frigeri A., Hasegawa H., Verkman A. S. Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem. 1994 Aug 26;269(34):21845–21849. [PubMed] [Google Scholar]
  26. Marples D., Christensen S., Christensen E. I., Ottosen P. D., Nielsen S. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest. 1995 Apr;95(4):1838–1845. doi: 10.1172/JCI117863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marples D., Frøkiaer J., Dørup J., Knepper M. A., Nielsen S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest. 1996 Apr 15;97(8):1960–1968. doi: 10.1172/JCI118628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marples D., Knepper M. A., Christensen E. I., Nielsen S. Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol. 1995 Sep;269(3 Pt 1):C655–C664. doi: 10.1152/ajpcell.1995.269.3.C655. [DOI] [PubMed] [Google Scholar]
  29. Martial S., Price S. R., Sands J. M. Regulation of aldose reductase, sorbitol dehydrogenase, and taurine cotransporter mRNA in rat medulla. J Am Soc Nephrol. 1995 May;5(11):1971–1978. doi: 10.1681/ASN.V5111971. [DOI] [PubMed] [Google Scholar]
  30. Nielsen S., Chou C. L., Marples D., Christensen E. I., Kishore B. K., Knepper M. A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013–1017. doi: 10.1073/pnas.92.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nielsen S., DiGiovanni S. R., Christensen E. I., Knepper M. A., Harris H. W. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11663–11667. doi: 10.1073/pnas.90.24.11663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nielsen S., Knepper M. A. Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am J Physiol. 1993 Aug;265(2 Pt 2):F204–F213. doi: 10.1152/ajprenal.1993.265.2.F204. [DOI] [PubMed] [Google Scholar]
  33. Nielsen S., Marples D., Birn H., Mohtashami M., Dalby N. O., Trimble M., Knepper M. Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. J Clin Invest. 1995 Oct;96(4):1834–1844. doi: 10.1172/JCI118229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nonoguchi H., Sands J. M., Knepper M. A. Atrial natriuretic factor inhibits vasopressin-stimulated osmotic water permeability in rat inner medullary collecting duct. J Clin Invest. 1988 Oct;82(4):1383–1390. doi: 10.1172/JCI113742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Peil A. E., Stolte H., Schmidt-Nielsen B. Uncoupling of glomerular and tubular regulations of urea excretion in rat. Am J Physiol. 1990 Jun;258(6 Pt 2):F1666–F1674. doi: 10.1152/ajprenal.1990.258.6.F1666. [DOI] [PubMed] [Google Scholar]
  36. Pennell J. P., Sanjana V., Frey N. R., Jamison R. L. The effect of urea infusion on the urinary concentrating mechanism in protein-depleted rats. J Clin Invest. 1975 Feb;55(2):399–409. doi: 10.1172/JCI107944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sands J. M., Knepper M. A. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest. 1987 Jan;79(1):138–147. doi: 10.1172/JCI112774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sands J. M., Nonoguchi H., Knepper M. A. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol. 1987 Nov;253(5 Pt 2):F823–F832. doi: 10.1152/ajprenal.1987.253.5.F823. [DOI] [PubMed] [Google Scholar]
  39. Sands J. M., Schrader D. C. An independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts. J Clin Invest. 1991 Jul;88(1):137–142. doi: 10.1172/JCI115269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Terris J., Ecelbarger C. A., Marples D., Knepper M. A., Nielsen S. Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol. 1995 Dec;269(6 Pt 2):F775–F785. doi: 10.1152/ajprenal.1995.269.6.F775. [DOI] [PubMed] [Google Scholar]
  41. Wilcox J. N., Smith K. M., Schwartz S. M., Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2839–2843. doi: 10.1073/pnas.86.8.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilcox J. N., Smith K. M., Williams L. T., Schwartz S. M., Gordon D. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J Clin Invest. 1988 Sep;82(3):1134–1143. doi: 10.1172/JCI113671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yamamoto T., Sasaki S., Fushimi K., Ishibashi K., Yaoita E., Kawasaki K., Marumo F., Kihara I. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol. 1995 Jun;268(6 Pt 1):C1546–C1551. doi: 10.1152/ajpcell.1995.268.6.C1546. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES