Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jun 15;97(12):2823–2832. doi: 10.1172/JCI118738

Differential expression in glioblastoma multiforme and cerebral hemangioblastoma of cytoplasmic proteins that bind two different domains within the 3'-untranslated region of the human glucose transporter 1 (GLUT1) messenger RNA.

H Tsukamoto 1, R J Boado 1, W M Pardridge 1
PMCID: PMC507376  PMID: 8675694

Abstract

The glucose transporter 1 (GLUT1) protein is underexpressed in human glioblastoma multiforme and is overexpressed in human cerebral hemangioblastoma. To gain in-sight into possible posttranscriptional mechanisms regulating the expression of the GLUT1 protein in human brain tumors, cytosolic proteins were prepared from these two tumors and used in RNase T1 protection assays that employed [32P]human GLUT1 synthetic RNA prepared from transcription plasmids. Gel shift mobility assays and ultra-violet light cross-linking studies demonstrated the formation of specific RNA/protein complexes that migrated with a mol mass of 120, 44, and 41 kD. RNase T1 mapping and oligodeoxynucleotide competition studies showed that the 120 kD complex was comprised of an RNA fragment that localized to nucleotides 2186-2203 of the GLUT1 mRNA. The 44 kD complex contained an adenosine-uridine-rich RNA fragment that localized to nucleotides 1885-1906 of the human GLUT1 mRNA, and the formation of this complex was inhibited by synthetic RNA enriched in adenosine-uridine sequences. The 44 kD complex was selectively downregulated in hemangioblastoma as compared to glioblastoma multiforme. These studies demonstrate that human brain tumors have differential regulation of cytosolic proteins that specifically interact with two different domains in the 3'-untranslated region of the GLUT1 mRNA, which may serve to mediate the posttranscriptional regulation of GLUT1 gene expression in these tumors.

Full Text

The Full Text of this article is available as a PDF (577.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnbaum M. J., Haspel H. C., Rosen O. M. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5784–5788. doi: 10.1073/pnas.83.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackburn P., Wilson G., Moore S. Ribonuclease inhibitor from human placenta. Purification and properties. J Biol Chem. 1977 Aug 25;252(16):5904–5910. [PubMed] [Google Scholar]
  3. Boado R. J., Black K. L., Pardridge W. M. Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Brain Res Mol Brain Res. 1994 Nov;27(1):51–57. doi: 10.1016/0169-328x(94)90183-x. [DOI] [PubMed] [Google Scholar]
  4. Boado R. J., Pardridge W. M. Complete protection of antisense oligonucleotides against serum nuclease degradation by an avidin-biotin system. Bioconjug Chem. 1992 Nov-Dec;3(6):519–523. doi: 10.1021/bc00018a010. [DOI] [PubMed] [Google Scholar]
  5. Bohjanen P. R., Petryniak B., June C. H., Thompson C. B., Lindsten T. An inducible cytoplasmic factor (AU-B) binds selectively to AUUUA multimers in the 3' untranslated region of lymphokine mRNA. Mol Cell Biol. 1991 Jun;11(6):3288–3295. doi: 10.1128/mcb.11.6.3288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  7. Cole M. D., Mango S. E. cis-acting determinants of c-myc mRNA stability. Enzyme. 1990;44(1-4):167–180. doi: 10.1159/000468755. [DOI] [PubMed] [Google Scholar]
  8. Cornford E. M., Hyman S., Black K. L., Cornford M. E., Vinters H. V., Pardridge W. M. High expression of the Glut1 glucose transporter in human brain hemangioblastoma endothelium. J Neuropathol Exp Neurol. 1995 Nov;54(6):842–851. doi: 10.1097/00005072-199511000-00011. [DOI] [PubMed] [Google Scholar]
  9. Dwyer K. J., Boado R. J., Pardridge W. M. Cis-element/cytoplasmic protein interaction within the 3'-untranslated region of the GLUT1 glucose transporter mRNA. J Neurochem. 1996 Feb;66(2):449–458. doi: 10.1046/j.1471-4159.1996.66020449.x. [DOI] [PubMed] [Google Scholar]
  10. Gaugitsch H. W., Prieschl E. E., Kalthoff F., Huber N. E., Baumruker T. A novel transiently expressed, integral membrane protein linked to cell activation. Molecular cloning via the rapid degradation signal AUUUA. J Biol Chem. 1992 Jun 5;267(16):11267–11273. [PubMed] [Google Scholar]
  11. Guerin C., Laterra J., Hruban R. H., Brem H., Drewes L. R., Goldstein G. W. The glucose transporter and blood-brain barrier of human brain tumors. Ann Neurol. 1990 Dec;28(6):758–765. doi: 10.1002/ana.410280606. [DOI] [PubMed] [Google Scholar]
  12. Harik S. I., Roessmann U. The erythrocyte-type glucose transporter in blood vessels of primary and metastatic brain tumors. Ann Neurol. 1991 May;29(5):487–491. doi: 10.1002/ana.410290507. [DOI] [PubMed] [Google Scholar]
  13. Kang J. J., Yokoi T. J., Holland M. J. Binding sites for abundant nuclear factors modulate RNA polymerase I-dependent enhancer function in Saccharomyces cerevisiae. J Biol Chem. 1995 Dec 1;270(48):28723–28732. doi: 10.1074/jbc.270.48.28723. [DOI] [PubMed] [Google Scholar]
  14. Klausner R. D., Harford J. B. cis-trans models for post-transcriptional gene regulation. Science. 1989 Nov 17;246(4932):870–872. doi: 10.1126/science.2683086. [DOI] [PubMed] [Google Scholar]
  15. Krieg P. A., Melton D. A. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 1987;155:397–415. doi: 10.1016/0076-6879(87)55027-3. [DOI] [PubMed] [Google Scholar]
  16. Kwon Y. K., Hecht N. B. Cytoplasmic protein binding to highly conserved sequences in the 3' untranslated region of mouse protamine 2 mRNA, a translationally regulated transcript of male germ cells. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3584–3588. doi: 10.1073/pnas.88.9.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leibold E. A., Munro H. N. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5' untranslated region of ferritin heavy- and light-subunit mRNAs. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2171–2175. doi: 10.1073/pnas.85.7.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liang H. M., Jost J. P. An estrogen-dependent polysomal protein binds to the 5' untranslated region of the chicken vitellogenin mRNA. Nucleic Acids Res. 1991 May 11;19(9):2289–2294. doi: 10.1093/nar/19.9.2289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Malter J. S. Identification of an AUUUA-specific messenger RNA binding protein. Science. 1989 Nov 3;246(4930):664–666. doi: 10.1126/science.2814487. [DOI] [PubMed] [Google Scholar]
  20. Mansur N. R., Meyer-Siegler K., Wurzer J. C., Sirover M. A. Cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells. Nucleic Acids Res. 1993 Feb 25;21(4):993–998. doi: 10.1093/nar/21.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
  22. Mueckler M., Lodish H. F. The human glucose transporter can insert posttranslationally into microsomes. Cell. 1986 Feb 28;44(4):629–637. doi: 10.1016/0092-8674(86)90272-2. [DOI] [PubMed] [Google Scholar]
  23. Nagamatsu S., Sawa H., Wakizaka A., Hoshino T. Expression of facilitative glucose transporter isoforms in human brain tumors. J Neurochem. 1993 Dec;61(6):2048–2053. doi: 10.1111/j.1471-4159.1993.tb07441.x. [DOI] [PubMed] [Google Scholar]
  24. Nagy E., Rigby W. F. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J Biol Chem. 1995 Feb 10;270(6):2755–2763. doi: 10.1074/jbc.270.6.2755. [DOI] [PubMed] [Google Scholar]
  25. Nickelsen J., Link G. Interaction of a 3' RNA region of the mustard trnK gene with chloroplast proteins. Nucleic Acids Res. 1989 Dec 11;17(23):9637–9648. doi: 10.1093/nar/17.23.9637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nishioka T., Oda Y., Seino Y., Yamamoto T., Inagaki N., Yano H., Imura H., Shigemoto R., Kikuchi H. Distribution of the glucose transporters in human brain tumors. Cancer Res. 1992 Jul 15;52(14):3972–3979. [PubMed] [Google Scholar]
  27. Raué H. A. Metabolic stability of mRNA in yeast--a potential target for modulating productivity? Trends Biotechnol. 1994 Nov;12(11):444–449. doi: 10.1016/0167-7799(94)90019-1. [DOI] [PubMed] [Google Scholar]
  28. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  29. Stephens J. M., Carter B. Z., Pekala P. H., Malter J. S. Tumor necrosis factor alpha-induced glucose transporter (GLUT-1) mRNA stabilization in 3T3-L1 preadipocytes. Regulation by the adenosine-uridine binding factor. J Biol Chem. 1992 Apr 25;267(12):8336–8341. [PubMed] [Google Scholar]
  30. Theil E. C. Regulation of ferritin and transferrin receptor mRNAs. J Biol Chem. 1990 Mar 25;265(9):4771–4774. [PubMed] [Google Scholar]
  31. Vakalopoulou E., Schaack J., Shenk T. A 32-kilodalton protein binds to AU-rich domains in the 3' untranslated regions of rapidly degraded mRNAs. Mol Cell Biol. 1991 Jun;11(6):3355–3364. doi: 10.1128/mcb.11.6.3355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson T., Treisman R. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3' AU-rich sequences. Nature. 1988 Nov 24;336(6197):396–399. doi: 10.1038/336396a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES