Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jun 15;97(12):2859–2865. doi: 10.1172/JCI118742

Mechanism of free fatty acid-induced insulin resistance in humans.

M Roden 1, T B Price 1, G Perseghin 1, K F Petersen 1, D L Rothman 1, G W Cline 1, G I Shulman 1
PMCID: PMC507380  PMID: 8675698

Abstract

To examine the mechanism by which lipids cause insulin resistance in humans, skeletal muscle glycogen and glucose-6-phosphate concentrations were measured every 15 min by simultaneous 13C and 31P nuclear magnetic resonance spectroscopy in nine healthy subjects in the presence of low (0.18 +/- 0.02 mM [mean +/- SEM]; control) or high (1.93 +/- 0.04 mM; lipid infusion) plasma free fatty acid levels under euglycemic (approximately 5.2 mM) hyperinsulinemic (approximately 400 pM) clamp conditions for 6 h. During the initial 3.5 h of the clamp the rate of whole-body glucose uptake was not affected by lipid infusion, but it then decreased continuously to be approximately 46% of control values after 6 h (P < 0.00001). Augmented lipid oxidation was accompanied by a approximately 40% reduction of oxidative glucose metabolism starting during the third hour of lipid infusion (P < 0.05). Rates of muscle glycogen synthesis were similar during the first 3 h of lipid and control infusion, but thereafter decreased to approximately 50% of control values (4.0 +/- 1.0 vs. 9.3 +/- 1.6 mumol/[kg.min], P < 0.05). Reduction of muscle glycogen synthesis by elevated plasma free fatty acids was preceded by a fall of muscle glucose-6-phosphate concentrations starting at approximately 1.5 h (195 +/- 25 vs. control: 237 +/- 26 mM; P < 0.01). Therefore in contrast to the originally postulated mechanism in which free fatty acids were thought to inhibit insulin-stimulated glucose uptake in muscle through initial inhibition of pyruvate dehydrogenase these results demonstrate that free fatty acids induce insulin resistance in humans by initial inhibition of glucose transport/phosphorylation which is then followed by an approximately 50% reduction in both the rate of muscle glycogen synthesis and glucose oxidation.

Full Text

The Full Text of this article is available as a PDF (173.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevilacqua S., Bonadonna R., Buzzigoli G., Boni C., Ciociaro D., Maccari F., Giorico M. A., Ferrannini E. Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism. 1987 May;36(5):502–506. doi: 10.1016/0026-0495(87)90051-5. [DOI] [PubMed] [Google Scholar]
  2. Bevilacqua S., Buzzigoli G., Bonadonna R., Brandi L. S., Oleggini M., Boni C., Geloni M., Ferrannini E. Operation of Randle's cycle in patients with NIDDM. Diabetes. 1990 Mar;39(3):383–389. doi: 10.2337/diab.39.3.383. [DOI] [PubMed] [Google Scholar]
  3. Bloch G., Chase J. R., Avison M. J., Shulman R. G. In vivo 31P NMR measurement of glucose-6-phosphate in the rat muscle after exercise. Magn Reson Med. 1993 Sep;30(3):347–350. doi: 10.1002/mrm.1910300311. [DOI] [PubMed] [Google Scholar]
  4. Boden G., Chen X., Ruiz J., White J. V., Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994 Jun;93(6):2438–2446. doi: 10.1172/JCI117252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boden G., Jadali F., White J., Liang Y., Mozzoli M., Chen X., Coleman E., Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest. 1991 Sep;88(3):960–966. doi: 10.1172/JCI115399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bogardus C., Lillioja S., Stone K., Mott D. Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest. 1984 Apr;73(4):1185–1190. doi: 10.1172/JCI111304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
  8. Ferrannini E., Barrett E. J., Bevilacqua S., DeFronzo R. A. Effect of fatty acids on glucose production and utilization in man. J Clin Invest. 1983 Nov;72(5):1737–1747. doi: 10.1172/JCI111133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson A. B., Argyraki M., Thow J. C., Cooper B. G., Fulcher G., Taylor R. Effect of increased free fatty acid supply on glucose metabolism and skeletal muscle glycogen synthase activity in normal man. Clin Sci (Lond) 1992 Feb;82(2):219–226. doi: 10.1042/cs0820219. [DOI] [PubMed] [Google Scholar]
  10. Kahn B. B., Pedersen O. Suppression of GLUT4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity. Endocrinology. 1993 Jan;132(1):13–22. doi: 10.1210/endo.132.1.8419118. [DOI] [PubMed] [Google Scholar]
  11. Katz A., Raz I., Spencer M. K., Rising R., Mott D. M. Hyperglycemia induces accumulation of glucose in human skeletal muscle. Am J Physiol. 1991 Apr;260(4 Pt 2):R698–R703. doi: 10.1152/ajpregu.1991.260.4.R698. [DOI] [PubMed] [Google Scholar]
  12. Kelley D. E., Mokan M., Simoneau J. A., Mandarino L. J. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest. 1993 Jul;92(1):91–98. doi: 10.1172/JCI116603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McGarry J. D. What if Minkowski had been ageusic? An alternative angle on diabetes. Science. 1992 Oct 30;258(5083):766–770. doi: 10.1126/science.1439783. [DOI] [PubMed] [Google Scholar]
  14. Price T. B., Rothman D. L., Taylor R., Avison M. J., Shulman G. I., Shulman R. G. Human muscle glycogen resynthesis after exercise: insulin-dependent and -independent phases. J Appl Physiol (1985) 1994 Jan;76(1):104–111. doi: 10.1152/jappl.1994.76.1.104. [DOI] [PubMed] [Google Scholar]
  15. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  16. Randle P. J., Garland P. B., Newsholme E. A., Hales C. N. The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus. Ann N Y Acad Sci. 1965 Oct 8;131(1):324–333. doi: 10.1111/j.1749-6632.1965.tb34800.x. [DOI] [PubMed] [Google Scholar]
  17. Randle P. J., Newsholme E. A., Garland P. B. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J. 1964 Dec;93(3):652–665. doi: 10.1042/bj0930652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Randle P. J., Priestman D. A., Mistry S., Halsall A. Mechanisms modifying glucose oxidation in diabetes mellitus. Diabetologia. 1994 Sep;37 (Suppl 2):S155–S161. doi: 10.1007/BF00400839. [DOI] [PubMed] [Google Scholar]
  19. Reaven G. M., Hollenbeck C., Jeng C. Y., Wu M. S., Chen Y. D. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes. 1988 Aug;37(8):1020–1024. doi: 10.2337/diab.37.8.1020. [DOI] [PubMed] [Google Scholar]
  20. Rossetti L., Giaccari A. Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake. A dose-response euglycemic clamp study in normal and diabetic rats. J Clin Invest. 1990 Jun;85(6):1785–1792. doi: 10.1172/JCI114636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rothman D. L., Magnusson I., Cline G., Gerard D., Kahn C. R., Shulman R. G., Shulman G. I. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):983–987. doi: 10.1073/pnas.92.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rothman D. L., Shulman R. G., Shulman G. I. 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest. 1992 Apr;89(4):1069–1075. doi: 10.1172/JCI115686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saloranta C., Koivisto V., Widén E., Falholt K., DeFronzo R. A., Härkönen M., Groop L. Contribution of muscle and liver to glucose-fatty acid cycle in humans. Am J Physiol. 1993 Apr;264(4 Pt 1):E599–E605. doi: 10.1152/ajpendo.1993.264.4.E599. [DOI] [PubMed] [Google Scholar]
  24. Shulman G. I., Rothman D. L., Jue T., Stein P., DeFronzo R. A., Shulman R. G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990 Jan 25;322(4):223–228. doi: 10.1056/NEJM199001253220403. [DOI] [PubMed] [Google Scholar]
  25. Taylor R., Price T. B., Rothman D. L., Shulman R. G., Shulman G. I. Validation of 13C NMR measurement of human skeletal muscle glycogen by direct biochemical assay of needle biopsy samples. Magn Reson Med. 1992 Sep;27(1):13–20. doi: 10.1002/mrm.1910270103. [DOI] [PubMed] [Google Scholar]
  26. Thiébaud D., DeFronzo R. A., Jacot E., Golay A., Acheson K., Maeder E., Jéquier E., Felber J. P. Effect of long chain triglyceride infusion on glucose metabolism in man. Metabolism. 1982 Nov;31(11):1128–1136. doi: 10.1016/0026-0495(82)90163-9. [DOI] [PubMed] [Google Scholar]
  27. Wolfe B. M., Klein S., Peters E. J., Schmidt B. F., Wolfe R. R. Effect of elevated free fatty acids on glucose oxidation in normal humans. Metabolism. 1988 Apr;37(4):323–329. doi: 10.1016/0026-0495(88)90131-x. [DOI] [PubMed] [Google Scholar]
  28. Yki-Järvinen H., Puhakainen I., Koivisto V. A. Effect of free fatty acids on glucose uptake and nonoxidative glycolysis across human forearm tissues in the basal state and during insulin stimulation. J Clin Endocrinol Metab. 1991 Jun;72(6):1268–1277. doi: 10.1210/jcem-72-6-1268. [DOI] [PubMed] [Google Scholar]
  29. Yki-Järvinen H., Puhakainen I., Saloranta C., Groop L., Taskinen M. R. Demonstration of a novel feedback mechanism between FFA oxidation from intracellular and intravascular sources. Am J Physiol. 1991 May;260(5 Pt 1):E680–E689. doi: 10.1152/ajpendo.1991.260.5.E680. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES