Abstract
There is evidence that angiotensin II is synthesized by the proximal tubule and secreted into the tubular lumen. This study examined the functional significance of endogenously produced angiotensin II on proximal tubule transport in male Sprague-Dawley rats. Addition of 10(-11), 10(-8), and 10(-6) M angiotensin II to the lumen of proximal convoluted tubules perfused in vivo had no effect on the rate of fluid reabsorption. The absence of an effect of exogenous luminal angiotensin II could be due to its endogenous production and luminal secretion. Luminal 10(-8) M Dup 753 (an angiotensin II receptor antagonist) resulted in a 35% decrease in proximal tubule fluid reabsorption when compared to control (Jv = 1.64 +/- 0.12 nl/mm.min vs. 2.55 +/- 0.32 nl/mm.min, P < 0.05). Similarly, luminal 10(-4) M enalaprilat, an angiotensin converting enzyme inhibitor, decreased fluid reabsorption by 40% (Jv = 1.53 +/- 0.23 nl/mm.min vs. 2.55 +/- 0.32 nl/mm.min, P < 0.05). When 10(-11) or 10(-8) M exogenous angiotensin II was added to enalaprilat (10(-4) M) in the luminal perfusate, fluid reabsorption returned to its baseline rate (Jv = 2.78 +/- 0.35 nl/mm.min). Thus, addition of exogenous angiotensin II stimulates proximal tubule transport when endogenous production is inhibited. These experiments show that endogenously produced angiotensin II modulates fluid transport in the proximal tubule independent of systemic angiotensin II.
Full Text
The Full Text of this article is available as a PDF (135.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braam B., Mitchell K. D., Fox J., Navar L. G. Proximal tubular secretion of angiotensin II in rats. Am J Physiol. 1993 May;264(5 Pt 2):F891–F898. doi: 10.1152/ajprenal.1993.264.5.F891. [DOI] [PubMed] [Google Scholar]
- Brown G. P., Douglas J. G. Angiotensin II binding sites on isolated rat renal brush border membranes. Endocrinology. 1982 Dec;111(6):1830–1836. doi: 10.1210/endo-111-6-1830. [DOI] [PubMed] [Google Scholar]
- Brown G. P., Douglas J. G. Angiotensin II-binding sites in rat and primate isolated renal tubular basolateral membranes. Endocrinology. 1983 Jun;112(6):2007–2014. doi: 10.1210/endo-112-6-2007. [DOI] [PubMed] [Google Scholar]
- Bruneval P., Hinglais N., Alhenc-Gelas F., Tricottet V., Corvol P., Menard J., Camilleri J. P., Bariety J. Angiotensin I converting enzyme in human intestine and kidney. Ultrastructural immunohistochemical localization. Histochemistry. 1986;85(1):73–80. doi: 10.1007/BF00508656. [DOI] [PubMed] [Google Scholar]
- Chiu A. T., McCall D. E., Price W. A., Wong P. C., Carini D. J., Duncia J. V., Wexler R. R., Yoo S. E., Johnson A. L., Timmermans P. B. Nonpeptide angiotensin II receptor antagonists. VII. Cellular and biochemical pharmacology of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther. 1990 Feb;252(2):711–718. [PubMed] [Google Scholar]
- Douglas J. G. Angiotensin receptor subtypes of the kidney cortex. Am J Physiol. 1987 Jul;253(1 Pt 2):F1–F7. doi: 10.1152/ajprenal.1987.253.1.F1. [DOI] [PubMed] [Google Scholar]
- Haas E., Lewis L., Koshy T. J., Varde A. U., Renerts L. V., Bagai R. C. Angiotensin II-producing enzyme III from acidified serum of nephrectomized dogs. Activation of proenzyme III to enzyme III by cathepsin G. Am J Hypertens. 1989 Sep;2(9):708–714. doi: 10.1093/ajh/2.9.708. [DOI] [PubMed] [Google Scholar]
- Haas E., Lewis L., Koshy T. J., Varde A. U., Renerts L., Bagai R. C. Angiotensin II-producing enzyme III from acidified serum of nephrectomized dogs. Am J Hypertens. 1989 Sep;2(9):696–707. doi: 10.1093/ajh/2.9.696. [DOI] [PubMed] [Google Scholar]
- Harris P. J., Young J. A. Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch. 1977 Jan 17;367(3):295–297. doi: 10.1007/BF00581370. [DOI] [PubMed] [Google Scholar]
- Ingelfinger J. R., Zuo W. M., Fon E. A., Ellison K. E., Dzau V. J. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest. 1990 Feb;85(2):417–423. doi: 10.1172/JCI114454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L., Wang Y. P., Capparelli A. W., Jo O. D., Yanagawa N. Effect of luminal angiotensin II on proximal tubule fluid transport: role of apical phospholipase A2. Am J Physiol. 1994 Feb;266(2 Pt 2):F202–F209. doi: 10.1152/ajprenal.1994.266.2.F202. [DOI] [PubMed] [Google Scholar]
- Liu F. Y., Cogan M. G. Angiotensin II stimulates early proximal bicarbonate absorption in the rat by decreasing cyclic adenosine monophosphate. J Clin Invest. 1989 Jul;84(1):83–91. doi: 10.1172/JCI114174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu F. Y., Cogan M. G. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J Clin Invest. 1988 Aug;82(2):601–607. doi: 10.1172/JCI113638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu F. Y., Cogan M. G. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J Clin Invest. 1987 Jul;80(1):272–275. doi: 10.1172/JCI113059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacFadyen R. J., Meredith P. A., Elliott H. L. Enalapril clinical pharmacokinetics and pharmacokinetic-pharmacodynamic relationships. An overview. Clin Pharmacokinet. 1993 Oct;25(4):274–282. doi: 10.2165/00003088-199325040-00003. [DOI] [PubMed] [Google Scholar]
- Maddox D. A., Price D. C., Rector F. C., Jr Effects of surgery on plasma volume and salt and water excretion in rats. Am J Physiol. 1977 Dec;233(6):F600–F606. doi: 10.1152/ajprenal.1977.233.6.F600. [DOI] [PubMed] [Google Scholar]
- Marchetti J., Roseau S., Alhenc-Gelas F. Angiotensin I converting enzyme and kinin-hydrolyzing enzymes along the rabbit nephron. Kidney Int. 1987 Mar;31(3):744–751. doi: 10.1038/ki.1987.61. [DOI] [PubMed] [Google Scholar]
- Miller J. J., Changaris D. G., Levy R. S. Conversion of angiotensin I to angiotensin II by cathepsin A isoenzymes of porcine kidney. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1122–1129. doi: 10.1016/0006-291x(88)90257-4. [DOI] [PubMed] [Google Scholar]
- Miura S., Ideishi M., Sakai T., Motoyama M., Kinoshita A., Sasaguri M., Tanaka H., Shindo M., Arakawa K. Angiotensin II formation by an alternative pathway during exercise in humans. J Hypertens. 1994 Oct;12(10):1177–1181. [PubMed] [Google Scholar]
- Moe O. W., Ujiie K., Star R. A., Miller R. T., Widell J., Alpern R. J., Henrich W. L. Renin expression in renal proximal tubule. J Clin Invest. 1993 Mar;91(3):774–779. doi: 10.1172/JCI116296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navar L. G., Lewis L., Hymel A., Braam B., Mitchell K. D. Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J Am Soc Nephrol. 1994 Oct;5(4):1153–1158. doi: 10.1681/ASN.V541153. [DOI] [PubMed] [Google Scholar]
- Peterson D. R., Chrabaszcz G., Peterson W. R., Oparil S. Mechanism for renal tubular handling of angiotensin. Am J Physiol. 1979 Apr;236(4):F365–F372. doi: 10.1152/ajprenal.1979.236.4.F365. [DOI] [PubMed] [Google Scholar]
- Richoux J. P., Cordonnier J. L., Bouhnik J., Clauser E., Corvol P., Menard J., Grignon G. Immunocytochemical localization of angiotensinogen in rat liver and kidney. Cell Tissue Res. 1983;233(2):439–451. doi: 10.1007/BF00238309. [DOI] [PubMed] [Google Scholar]
- Rix E., Ganten D., Schüll B., Unger T., Taugner R. Converting-enzyme in the choroid plexus, brain, and kidney: immunocytochemical and biochemical studies in rats. Neurosci Lett. 1981 Mar 10;22(2):125–130. doi: 10.1016/0304-3940(81)90075-6. [DOI] [PubMed] [Google Scholar]
- Seikaly M. G., Arant B. S., Jr, Seney F. D., Jr Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest. 1990 Oct;86(4):1352–1357. doi: 10.1172/JCI114846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward P. E., Erdös E. G., Gedney C. D., Dowben R. M., Reynolds R. C. Isolation of membrane-bound renal enzymes that metabolize kinins and angiotensins. Biochem J. 1976 Sep 1;157(3):643–650. doi: 10.1042/bj1570643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong P. C., Price W. A., Chiu A. T., Duncia J. V., Carini D. J., Wexler R. R., Johnson A. L., Timmermans P. B. Nonpeptide angiotensin II receptor antagonists. IX. Antihypertensive activity in rats of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther. 1990 Feb;252(2):726–732. [PubMed] [Google Scholar]
- Wong P. C., Price W. A., Chiu A. T., Duncia J. V., Carini D. J., Wexler R. R., Johnson A. L., Timmermans P. B. Nonpeptide angiotensin II receptor antagonists. VIII. Characterization of functional antagonism displayed by DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther. 1990 Feb;252(2):719–725. [PubMed] [Google Scholar]