Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 1;98(1):14–17. doi: 10.1172/JCI118758

Proadrenomedullin NH2-terminal 20 peptide inhibits the voltage-gated Ca2+ channel current through a pertussis toxin-sensitive G protein in rat pheochromocytoma-derived PC 12 cells.

K Takano 1, N Yamashita 1, T Fujita 1
PMCID: PMC507394  PMID: 8690785

Abstract

The effect of proadrenomedullin NH2-terminal 20 peptide (PAMP) on the voltage-gated Ca2+ channel current was investigated using the perforated whole-cell clamp technique on NGF-treated PC12 cells. PAMP inhibited the Ba2+ current through N-type Ca2+ channels in a concentration dependent manner. Injection of GDPbetaS into the cell abolished the inhibition while injection of GTPgammaS into the cell made the inhibition irreversible, indicating that the PAMP-induced inhibition of the voltage-gated Ca2+ channel was mediated by a G protein. The inhibition was abolished by pretreating the cells with pertussis toxin, indicating that a pertussis toxin-sensitive G protein was involved in the signal transduction mechanism of PAMP. The present study revealed that the inhibition of catecholamine secretion from sympathetic nerve endings by PAMP could be explained by the inhibition of N-type Ca2+ channels, which was mediated by pertussis toxin-sensitive G protein.

Full Text

The Full Text of this article is available as a PDF (172.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell V., Berrow N. S., Fitzgerald E. M., Brickley K., Dolphin A. C. Inhibition of the interaction of G protein G(o) with calcium channels by the calcium channel beta-subunit in rat neurones. J Physiol. 1995 Jun 1;485(Pt 2):365–372. doi: 10.1113/jphysiol.1995.sp020735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hirning L. D., Fox A. P., McCleskey E. W., Olivera B. M., Thayer S. A., Miller R. J., Tsien R. W. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988 Jan 1;239(4835):57–61. doi: 10.1126/science.2447647. [DOI] [PubMed] [Google Scholar]
  3. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Katoh F., Kitamura K., Niina H., Yamamoto R., Washimine H., Kangawa K., Yamamoto Y., Kobayashi H., Eto T., Wada A. Proadrenomedullin N-terminal 20 peptide (PAMP), an endogenous anticholinergic peptide: its exocytotic secretion and inhibition of catecholamine secretion in adrenal medulla. J Neurochem. 1995 Jan;64(1):459–461. doi: 10.1046/j.1471-4159.1995.64010459.x. [DOI] [PubMed] [Google Scholar]
  5. Kitamura K., Sakata J., Kangawa K., Kojima M., Matsuo H., Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem Biophys Res Commun. 1993 Jul 30;194(2):720–725. doi: 10.1006/bbrc.1993.1881. [DOI] [PubMed] [Google Scholar]
  6. Lewis D. L., De Aizpurua H. J., Rausch D. M. Enhanced expression of Ca2+ channels by nerve growth factor and the v-src oncogene in rat phaeochromocytoma cells. J Physiol. 1993 Jun;465:325–342. doi: 10.1113/jphysiol.1993.sp019679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Miller R. J. Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J. 1990 Dec;4(15):3291–3299. [PubMed] [Google Scholar]
  8. Rausch D. M., Lewis D. L., Barker J. L., Eiden L. E. Functional expression of dihydropyridine-insensitive calcium channels during PC12 cell differentiation by nerve growth factor (NGF), oncogenic ras, or src tyrosine kinase. Cell Mol Neurobiol. 1990 Jun;10(2):237–255. doi: 10.1007/BF00734577. [DOI] [PubMed] [Google Scholar]
  9. Sakata J., Shimokubo T., Kitamura K., Nakamura S., Kangawa K., Matsuo H., Eto T. Molecular cloning and biological activities of rat adrenomedullin, a hypotensive peptide. Biochem Biophys Res Commun. 1993 Sep 15;195(2):921–927. doi: 10.1006/bbrc.1993.2132. [DOI] [PubMed] [Google Scholar]
  10. Shimosawa T., Ito Y., Ando K., Kitamura K., Kangawa K., Fujita T. Proadrenomedullin NH(2)-terminal 20 peptide, a new product of the adrenomedullin gene, inhibits norepinephrine overflow from nerve endings. J Clin Invest. 1995 Sep;96(3):1672–1676. doi: 10.1172/JCI118208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Takahashi M., Tsukui H., Hatanaka H. Neuronal differentiation of Ca2+ channel by nerve growth factor. Brain Res. 1985 Aug 26;341(2):381–384. doi: 10.1016/0006-8993(85)91079-0. [DOI] [PubMed] [Google Scholar]
  12. Takano K., Stanfield P. R., Nakajima S., Nakajima Y. Protein kinase C-mediated inhibition of an inward rectifier potassium channel by substance P in nucleus basalis neurons. Neuron. 1995 May;14(5):999–1008. doi: 10.1016/0896-6273(95)90338-0. [DOI] [PubMed] [Google Scholar]
  13. Usowicz M. M., Porzig H., Becker C., Reuter H. Differential expression by nerve growth factor of two types of Ca2+ channels in rat phaeochromocytoma cell lines. J Physiol. 1990 Jul;426:95–116. doi: 10.1113/jphysiol.1990.sp018128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Washimine H., Kitamura K., Ichiki Y., Yamamoto Y., Kangawa K., Matsuo H., Eto T. Immunoreactive proadrenomedullin N-terminal 20 peptide in human tissue, plasma and urine. Biochem Biophys Res Commun. 1994 Jul 29;202(2):1081–1087. doi: 10.1006/bbrc.1994.2039. [DOI] [PubMed] [Google Scholar]
  15. Yamashita N., Hagiwara S. Membrane depolarization and intracellular Ca2+ increase caused by high external Ca2+ in a rat calcitonin-secreting cell line. J Physiol. 1990 Dec;431:243–267. doi: 10.1113/jphysiol.1990.sp018329. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES