Abstract
Adenosine is generated within the renal medulla under hypoxic conditions and is known to induce net vasoconstriction within the renal cortex while increasing medullary blood flow and oxygenation. To test the hypothesis that vasoconstriction of outer medullary descending vasa recta (OMDVR) is modulated by adenosine, we examined the effects of adenosine and adenosine Al and A2 receptor subtype agonists on in vitro perfused control and preconstricted rat OMDVR. Constriction with angiotensin II (ANG II, 10(-9) M) was attenuated by adenosine in a concentration-dependent manner (EC50 = 2.0 x 10(-7)M, P < 0.05). Similarly, an adenosine A2 agonist (CGS-21680, 10(-7) M), but not an adenosine Al agonist (cyclohexyladenosine, 10(-6) M), attenuated ANG II-induced vasoconstriction. Under control conditions, ablumenal application of adenosine (10(-12) to 10(-5) M) elicited a biphasic response. Additionally, cyclohexyladenosine (10(-6) M) caused vasoconstriction and CGS-21680 (10(-6) M) had no effect on untreated vessels. Finally, an influence of ANG II receptor stimulation on adenosine Al receptor-mediated vasoconstriction could not be shown. These data suggest that OMDVR possess both Al and A2 adenosine receptors and that they mediate constriction and dilatation, respectively. We conclude that adenosine is a potent modulator of OMDVR vasomotor tone and that its net effect is dependent upon local concentrations.
Full Text
The Full Text of this article is available as a PDF (175.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agmon Y., Dinour D., Brezis M. Disparate effects of adenosine A1- and A2-receptor agonists on intrarenal blood flow. Am J Physiol. 1993 Dec;265(6 Pt 2):F802–F806. doi: 10.1152/ajprenal.1993.265.6.F802. [DOI] [PubMed] [Google Scholar]
- Baranowski R. L., Westenfelder C. Estimation of renal interstitial adenosine and purine metabolites by microdialysis. Am J Physiol. 1994 Jul;267(1 Pt 2):F174–F182. doi: 10.1152/ajprenal.1994.267.1.F174. [DOI] [PubMed] [Google Scholar]
- Barrett R. J., Droppleman D. A. Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II. Am J Physiol. 1993 Nov;265(5 Pt 2):F651–F659. doi: 10.1152/ajprenal.1993.265.5.F651. [DOI] [PubMed] [Google Scholar]
- Beach R. E., Watts B. A., 3rd, Good D. W., Benedict C. R., DuBose T. D., Jr Effects of graded oxygen tension on adenosine release by renal medullary and thick ascending limb suspensions. Kidney Int. 1991 May;39(5):836–842. doi: 10.1038/ki.1991.105. [DOI] [PubMed] [Google Scholar]
- Brezis M., Rosen S. N., Epstein F. H. The pathophysiological implications of medullary hypoxia. Am J Kidney Dis. 1989 Mar;13(3):253–258. doi: 10.1016/s0272-6386(89)80062-9. [DOI] [PubMed] [Google Scholar]
- Brezis M., Rosen S. Hypoxia of the renal medulla--its implications for disease. N Engl J Med. 1995 Mar 9;332(10):647–655. doi: 10.1056/NEJM199503093321006. [DOI] [PubMed] [Google Scholar]
- Brezis M., Rosen S., Silva P., Epstein F. H. Renal ischemia: a new perspective. Kidney Int. 1984 Oct;26(4):375–383. doi: 10.1038/ki.1984.185. [DOI] [PubMed] [Google Scholar]
- Brezis M., Rosen S., Silva P., Epstein F. H. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J Clin Invest. 1984 Jan;73(1):182–190. doi: 10.1172/JCI111189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg M. B. Perfusion of isolated renal tubules. Yale J Biol Med. 1972 Jun-Aug;45(3-4):321–326. [PMC free article] [PubMed] [Google Scholar]
- Dietrich M. S., Endlich K., Parekh N., Steinhausen M. Interaction between adenosine and angiotensin II in renal microcirculation. Microvasc Res. 1991 May;41(3):275–288. doi: 10.1016/0026-2862(91)90028-a. [DOI] [PubMed] [Google Scholar]
- Dietrich M. S., Steinhausen M. Differential reactivity of cortical and juxtamedullary glomeruli to adenosine-1 and adenosine-2 receptor stimulation and angiotensin-converting enzyme inhibition. Microvasc Res. 1993 Mar;45(2):122–133. doi: 10.1006/mvre.1993.1012. [DOI] [PubMed] [Google Scholar]
- Dinour D., Brezis M. Effects of adenosine on intrarenal oxygenation. Am J Physiol. 1991 Nov;261(5 Pt 2):F787–F791. doi: 10.1152/ajprenal.1991.261.5.F787. [DOI] [PubMed] [Google Scholar]
- Hall J. E., Granger J. P., Hester R. L. Interactions between adenosine and angiotensin II in controlling glomerular filtration. Am J Physiol. 1985 Mar;248(3 Pt 2):F340–F346. doi: 10.1152/ajprenal.1985.248.3.F340. [DOI] [PubMed] [Google Scholar]
- Heyman S. N., Brezis M., Reubinoff C. A., Greenfeld Z., Lechene C., Epstein F. H., Rosen S. Acute renal failure with selective medullary injury in the rat. J Clin Invest. 1988 Aug;82(2):401–412. doi: 10.1172/JCI113612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holz F. G., Steinhausen M. Renovascular effects of adenosine receptor agonists. Ren Physiol. 1987;10(5):272–282. doi: 10.1159/000173135. [DOI] [PubMed] [Google Scholar]
- Joyner W. L., Mohama R. E., Myers T. O., Gilmore J. P. The selective response to adenosine of renal microvessels from hamster explants. Microvasc Res. 1988 Jan;35(1):122–131. doi: 10.1016/0026-2862(88)90055-6. [DOI] [PubMed] [Google Scholar]
- Lemley K. V., Kriz W. Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int. 1987 Feb;31(2):538–548. doi: 10.1038/ki.1987.33. [DOI] [PubMed] [Google Scholar]
- McCoy D. E., Bhattacharya S., Olson B. A., Levier D. G., Arend L. J., Spielman W. S. The renal adenosine system: structure, function, and regulation. Semin Nephrol. 1993 Jan;13(1):31–40. [PubMed] [Google Scholar]
- Miyamoto M., Yagil Y., Larson T., Robertson C., Jamison R. L. Effects of intrarenal adenosine on renal function and medullary blood flow in the rat. Am J Physiol. 1988 Dec;255(6 Pt 2):F1230–F1234. doi: 10.1152/ajprenal.1988.255.6.F1230. [DOI] [PubMed] [Google Scholar]
- Osswald H., Spielman W. S., Knox F. G. Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res. 1978 Sep;43(3):465–469. doi: 10.1161/01.res.43.3.465. [DOI] [PubMed] [Google Scholar]
- Pallone T. L., Robertson C. R., Jamison R. L. Renal medullary microcirculation. Physiol Rev. 1990 Jul;70(3):885–920. doi: 10.1152/physrev.1990.70.3.885. [DOI] [PubMed] [Google Scholar]
- Pallone T. L. Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglandin E2. Am J Physiol. 1994 Jun;266(6 Pt 2):F850–F857. doi: 10.1152/ajprenal.1994.266.6.F850. [DOI] [PubMed] [Google Scholar]
- Pallone T. L., Work J., Myers R. L., Jamison R. L. Transport of sodium and urea in outer medullary descending vasa recta. J Clin Invest. 1994 Jan;93(1):212–222. doi: 10.1172/JCI116948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossi N. F., Churchill P. C., Jacobson K. A., Leahy A. E. Further characterization of the renovascular effects of N6-cyclohexyladenosine in the isolated perfused rat kidney. J Pharmacol Exp Ther. 1987 Mar;240(3):911–915. [PMC free article] [PubMed] [Google Scholar]
- Silldorff E. P., Yang S., Pallone T. L. Prostaglandin E2 abrogates endothelin-induced vasoconstriction in renal outer medullary descending vasa recta of the rat. J Clin Invest. 1995 Jun;95(6):2734–2740. doi: 10.1172/JCI117976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spielman W. S., Arend L. J. Adenosine receptors and signaling in the kidney. Hypertension. 1991 Feb;17(2):117–130. doi: 10.1161/01.hyp.17.2.117. [DOI] [PubMed] [Google Scholar]
- Spielman W. S., Osswald H. Blockade of postocclusive renal vasoconstriction by an angiotensin II antagonists: evidence for an angiotensin-adenosine interaction. Am J Physiol. 1979 Dec;237(6):F463–F467. doi: 10.1152/ajprenal.1979.237.6.F463. [DOI] [PubMed] [Google Scholar]
- Spielman W. S., Thompson C. I. A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am J Physiol. 1982 May;242(5):F423–F435. doi: 10.1152/ajprenal.1982.242.5.F423. [DOI] [PubMed] [Google Scholar]
- Suzuki F., Shimada J., Mizumoto H., Karasawa A., Kubo K., Nonaka H., Ishii A., Kawakita T. Adenosine A1 antagonists. 2. Structure-activity relationships on diuretic activities and protective effects against acute renal failure. J Med Chem. 1992 Aug 7;35(16):3066–3075. doi: 10.1021/jm00094a022. [DOI] [PubMed] [Google Scholar]
- Thompson C. I., Spielman W. S. Renal hemodynamic effects of exogenously administered adenosine and polyadenylic acid. Am J Physiol. 1992 Nov;263(5 Pt 2):F816–F823. doi: 10.1152/ajprenal.1992.263.5.F816. [DOI] [PubMed] [Google Scholar]
- Weihprecht H., Lorenz J. N., Briggs J. P., Schnermann J. Synergistic effects of angiotensin and adenosine in the renal microvasculature. Am J Physiol. 1994 Feb;266(2 Pt 2):F227–F239. doi: 10.1152/ajprenal.1994.266.2.F227. [DOI] [PubMed] [Google Scholar]
- Yao K., Kusaka H., Sano J., Sato K., Karasawa A. Diuretic effects of KW-3902, a novel adenosine A1-receptor antagonist, in various models of acute renal failure in rats. Jpn J Pharmacol. 1994 Apr;64(4):281–288. doi: 10.1254/jjp.64.281. [DOI] [PubMed] [Google Scholar]