Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 1;98(1):108–115. doi: 10.1172/JCI118754

Intracellular lactate- and pyruvate-interconversion rates are increased in muscle tissue of non-insulin-dependent diabetic individuals.

A Avogaro 1, G Toffolo 1, M Miola 1, A Valerio 1, A Tiengo 1, C Cobelli 1, S Del Prato 1
PMCID: PMC507406  PMID: 8690781

Abstract

The contribution of muscle tissues of non-insulin-dependent diabetes mellitus (NIDDM) patients to blood lactate appearance remains undefined. To gain insight on intracellular pyruvate/lactate metabolism, the postabsorptive forearm metabolism of glucose, lactate, FFA, and ketone bodies (KB) was assessed in seven obese non-insulin-dependent diabetic patients (BMI = 28.0 +/- 0.5 kg/m2) and seven control individuals (BMI = 24.8 +/- 0.5 kg/m2) by using arteriovenous balance across forearm tissues along with continuous infusion of [3-13C1]-lactate and indirect calorimetry. Fasting plasma concentrations of glucose (10.0 +/- 0.3 vs. 4.7 +/- 0.2 mmol/liter), insulin (68 +/- 5 vs. 43 +/- 6 pmol/liter), FFA (0.57 +/- 0.02 vs. 0.51 +/- 0.02 mmol/liter), and blood levels of lactate (1.05 +/- 0.04 vs. 0.60 +/- 0.06 mmol/liter), and KB (0.48 +/- 0.04 vs. 0.29 +/- 0.02 mmol/liter) were higher in NIDDM patients (P < 0.01). Forearm glucose uptake was similar in the two groups (10.3 +/- 1.4 vs. 9.6 +/ 1.1 micromol/min/liter of forearm tissue), while KB uptake was twice as much in NIDDM patients as compared to control subjects. Lactate balance was only slightly increased in NIDDM patients (5.6 +/- 1.4 vs. 3.3 +/- 1.0 micromol/min/liter; P = NS). A two-compartment model of lactate and pyruvate kinetics in the forearm tissue was used to dissect out the rates of lactate to pyruvate and pyruvate to lactate interconversions. In spite of minor differences in the lactate balance, a fourfold increase in both lactate- (44.8 +/- 9.0 vs. 12.6 +/- 4.6 micromol/min/liter) and pyruvate-(50.4 +/- 9.8 vs. 16.0 +/- 5.0 micromol/min/liter) interconversion rates (both P < 0.01) were found. Whole body lactate turnover, assessed by using the classic isotope dilution principle, was higher in NIDDM individuals (46 +/- 9 vs. 21 +/- 3 micromol/min/kg; P < 0.01). Insights into the physiological meaning of this parameter were obtained by using a whole body noncompartmental model of lactate/pyruvate kinetics which provides a lower and upper bound for total lactate and pyruvate turnover (NIDDM = 46 +/- 9 vs. 108 +/- 31; controls = 21 +/- 3 - 50 +/-13 micromol/min/kg). In conclusion, in the postabsorptive state, despite a trivial lactate release by muscle, lactate- and pyruvate-interconversion rates are greatly enhanced in NIDDM patients, possibly due to concomitant impairment in the oxidative pathway of glucose metabolism. This finding strongly suggest a major disturbance in intracellular lactate/pyruvate metabolism in NIDDM.

Full Text

The Full Text of this article is available as a PDF (176.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avogaro A., Nosadini R., Doria A., Fioretto P., Velussi M., Vigorito C., Saccà L., Toffolo G., Cobelli C., Trevisan R. Myocardial metabolism in insulin-deficient diabetic humans without coronary artery disease. Am J Physiol. 1990 Apr;258(4 Pt 1):E606–E618. doi: 10.1152/ajpendo.1990.258.4.E606. [DOI] [PubMed] [Google Scholar]
  2. Avogaro A., Valerio A., Gnudi L., Maran A., Zolli M., Duner E., Riccio A., Del Prato S., Tiengo A., Nosadini R. Ketone body metabolism in NIDDM. Effect of sulfonylurea treatment. Diabetes. 1992 Aug;41(8):968–974. doi: 10.2337/diab.41.8.968. [DOI] [PubMed] [Google Scholar]
  3. Beaudry M., Duvallet A., Thieulart L., el Abida K., Rieu M. Lactate transport in skeletal muscle cells: uptake in L6 myoblasts. Acta Physiol Scand. 1991 Mar;141(3):379–381. doi: 10.1111/j.1748-1716.1991.tb09094.x. [DOI] [PubMed] [Google Scholar]
  4. Capaldo B., Napoli R., Di Bonito P., Albano G., Saccà L. Glucose and gluconeogenic substrate exchange by the forearm skeletal muscle in hyperglycemic and insulin-treated type II diabetic patients. J Clin Endocrinol Metab. 1990 Nov;71(5):1220–1223. doi: 10.1210/jcem-71-5-1220. [DOI] [PubMed] [Google Scholar]
  5. Chen Y. D., Golay A., Swislocki A. L., Reaven G. M. Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1987 Jan;64(1):17–21. doi: 10.1210/jcem-64-1-17. [DOI] [PubMed] [Google Scholar]
  6. Chinkes D. L., Zhang X. J., Romijn J. A., Sakurai Y., Wolfe R. R. Measurement of pyruvate and lactate kinetics across the hindlimb and gut of anesthetized dogs. Am J Physiol. 1994 Jul;267(1 Pt 1):E174–E182. doi: 10.1152/ajpendo.1994.267.1.E174. [DOI] [PubMed] [Google Scholar]
  7. Cobelli C., Toffolo G., Foster D. M. Tracer-to-tracee ratio for analysis of stable isotope tracer data: link with radioactive kinetic formalism. Am J Physiol. 1992 Jun;262(6 Pt 1):E968–E975. doi: 10.1152/ajpendo.1992.262.6.E968. [DOI] [PubMed] [Google Scholar]
  8. Consoli A., Nurjahan N., Gerich J. E., Mandarino L. J. Skeletal muscle is a major site of lactate uptake and release during hyperinsulinemia. Metabolism. 1992 Feb;41(2):176–179. doi: 10.1016/0026-0495(92)90148-4. [DOI] [PubMed] [Google Scholar]
  9. Consoli A., Nurjhan N., Capani F., Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes. 1989 May;38(5):550–557. doi: 10.2337/diab.38.5.550. [DOI] [PubMed] [Google Scholar]
  10. Consoli A., Nurjhan N., Reilly J. J., Jr, Bier D. M., Gerich J. E. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans. Am J Physiol. 1990 Nov;259(5 Pt 1):E677–E684. doi: 10.1152/ajpendo.1990.259.5.E677. [DOI] [PubMed] [Google Scholar]
  11. Consoli A., Nurjhan N., Reilly J. J., Jr, Bier D. M., Gerich J. E. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans. Am J Physiol. 1990 Nov;259(5 Pt 1):E677–E684. doi: 10.1152/ajpendo.1990.259.5.E677. [DOI] [PubMed] [Google Scholar]
  12. Consoli A., Nurjhan N., Reilly J. J., Jr, Bier D. M., Gerich J. E. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism. J Clin Invest. 1990 Dec;86(6):2038–2045. doi: 10.1172/JCI114940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DeFronzo R. A., Ferrannini E., Simonson D. C. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 1989 Apr;38(4):387–395. doi: 10.1016/0026-0495(89)90129-7. [DOI] [PubMed] [Google Scholar]
  14. DeFronzo R. A., Jacot E., Jequier E., Maeder E., Wahren J., Felber J. P. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981 Dec;30(12):1000–1007. doi: 10.2337/diab.30.12.1000. [DOI] [PubMed] [Google Scholar]
  15. Del Prato S., Bonadonna R. C., Bonora E., Gulli G., Solini A., Shank M., DeFronzo R. A. Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J Clin Invest. 1993 Feb;91(2):484–494. doi: 10.1172/JCI116226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Del Prato S., Riccio A., Vigili de Kreutzenberg S., Dorella M., Tiengo A., DeFronzo R. A. Basal plasma insulin levels exert a qualitative but not quantitative effect on glucose-mediated glucose uptake. Am J Physiol. 1995 Jun;268(6 Pt 1):E1089–E1095. doi: 10.1152/ajpendo.1995.268.6.E1089. [DOI] [PubMed] [Google Scholar]
  17. Dillon R. S. Importance of the hematocrit in interpretation of blood sugar. Diabetes. 1965 Oct;14(10):672–674. doi: 10.2337/diab.14.10.672. [DOI] [PubMed] [Google Scholar]
  18. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988 Mar;37(3):287–301. doi: 10.1016/0026-0495(88)90110-2. [DOI] [PubMed] [Google Scholar]
  19. Frayn K. N., Coppack S. W., Humphreys S. M. Glycerol and lactate uptake in human forearm. Metabolism. 1991 Dec;40(12):1317–1319. doi: 10.1016/0026-0495(91)90035-u. [DOI] [PubMed] [Google Scholar]
  20. Frayn K. N., Coppack S. W., Humphreys S. M., Whyte P. L. Metabolic characteristics of human adipose tissue in vivo. Clin Sci (Lond) 1989 May;76(5):509–516. doi: 10.1042/cs0760509. [DOI] [PubMed] [Google Scholar]
  21. Groop L. C., Bonadonna R. C., DelPrato S., Ratheiser K., Zyck K., Ferrannini E., DeFronzo R. A. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest. 1989 Jul;84(1):205–213. doi: 10.1172/JCI114142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hagström E., Arner P., Ungerstedt U., Bolinder J. Subcutaneous adipose tissue: a source of lactate production after glucose ingestion in humans. Am J Physiol. 1990 May;258(5 Pt 1):E888–E893. doi: 10.1152/ajpendo.1990.258.5.E888. [DOI] [PubMed] [Google Scholar]
  23. Jackson R. A., Roshania R. D., Hawa M. I., Sim B. M., DiSilvio L. Impact of glucose ingestion on hepatic and peripheral glucose metabolism in man: an analysis based on simultaneous use of the forearm and double isotope techniques. J Clin Endocrinol Metab. 1986 Sep;63(3):541–549. doi: 10.1210/jcem-63-3-541. [DOI] [PubMed] [Google Scholar]
  24. Jansson P. A., Larsson A., Smith U., Lönnroth P. Lactate release from the subcutaneous tissue in lean and obese men. J Clin Invest. 1994 Jan;93(1):240–246. doi: 10.1172/JCI116951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jansson P. A., Smith U., Lönnroth P. Evidence for lactate production by human adipose tissue in vivo. Diabetologia. 1990 Apr;33(4):253–256. doi: 10.1007/BF00404805. [DOI] [PubMed] [Google Scholar]
  26. Juel C., Honig A., Pilegaard H. Muscle lactate transport studied in sarcolemmal giant vesicles: dependence on fibre type and age. Acta Physiol Scand. 1991 Dec;143(4):361–365. doi: 10.1111/j.1748-1716.1991.tb09246.x. [DOI] [PubMed] [Google Scholar]
  27. Kreisberg R. A. Glucose-lactate inter-relations in man. N Engl J Med. 1972 Jul 20;287(3):132–137. doi: 10.1056/NEJM197207202870307. [DOI] [PubMed] [Google Scholar]
  28. Landau B. R., Wahren J. Nonproductive exchanges: the use of isotopes gone astray. Metabolism. 1992 May;41(5):457–459. doi: 10.1016/0026-0495(92)90199-k. [DOI] [PubMed] [Google Scholar]
  29. Large V., Soloviev M., Brunengraber H., Beylot M. Lactate and pyruvate isotopic enrichments in plasma and tissues of postabsorptive and starved rats. Am J Physiol. 1995 May;268(5 Pt 1):E880–E888. doi: 10.1152/ajpendo.1995.268.5.E880. [DOI] [PubMed] [Google Scholar]
  30. Lillioja S., Bogardus C., Mott D. M., Kennedy A. L., Knowler W. C., Howard B. V. Relationship between insulin-mediated glucose disposal and lipid metabolism in man. J Clin Invest. 1985 Apr;75(4):1106–1115. doi: 10.1172/JCI111804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lloyd B., Burrin J., Smythe P., Alberti K. G. Enzymic fluorometric continuous-flow assays for blood glucose, lactate, pyruvate, alanine, glycerol, and 3-hydroxybutyrate. Clin Chem. 1978 Oct;24(10):1724–1729. [PubMed] [Google Scholar]
  32. Nosadini R., Avogaro A., Bier D. M. Ketone and lactate metabolism: an exchange of conclusions. Metabolism. 1993 Feb;42(2):260–262. doi: 10.1016/0026-0495(93)90045-p. [DOI] [PubMed] [Google Scholar]
  33. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  34. Saccà L., Toffolo G., Cobelli C. V-A and A-V modes in whole body and regional kinetics: domain of validity from a physiological model. Am J Physiol. 1992 Oct;263(4 Pt 1):E597–E606. doi: 10.1152/ajpendo.1992.263.4.E597. [DOI] [PubMed] [Google Scholar]
  35. Sahlin K. Lactate production cannot be measured with tracer techniques. Am J Physiol. 1987 Mar;252(3 Pt 1):E439–E440. doi: 10.1152/ajpendo.1987.252.3.E439. [DOI] [PubMed] [Google Scholar]
  36. Shimizu S., Inoue K., Tani Y., Yamada H. Enzymatic microdetermination of serum free fatty acids. Anal Biochem. 1979 Oct 1;98(2):341–345. doi: 10.1016/0003-2697(79)90151-9. [DOI] [PubMed] [Google Scholar]
  37. Trevisan R., Nosadini R., Avogaro A., Lippe G., Duner E., Fioretto P., Deana R., Tessari P., Tiengo A., Velussi M. Type I diabetes is characterized by insulin resistance not only with regard to glucose, but also to lipid and amino acid metabolism. J Clin Endocrinol Metab. 1986 Jun;62(6):1155–1162. doi: 10.1210/jcem-62-6-1155. [DOI] [PubMed] [Google Scholar]
  38. Vaag A., Damsbo P., Hother-Nielsen O., Beck-Nielsen H. Hyperglycaemia compensates for the defects in insulin-mediated glucose metabolism and in the activation of glycogen synthase in the skeletal muscle of patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992 Jan;35(1):80–88. doi: 10.1007/BF00400856. [DOI] [PubMed] [Google Scholar]
  39. Yki-Järvinen H., Bogardus C., Foley J. E. Regulation of plasma lactate concentration in resting human subjects. Metabolism. 1990 Aug;39(8):859–864. doi: 10.1016/0026-0495(90)90133-w. [DOI] [PubMed] [Google Scholar]
  40. Zawadzki J. K., Wolfe R. R., Mott D. M., Lillioja S., Howard B. V., Bogardus C. Increased rate of Cori cycle in obese subjects with NIDDM and effect of weight reduction. Diabetes. 1988 Feb;37(2):154–159. doi: 10.2337/diab.37.2.154. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES