Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 1;98(1):136–141. doi: 10.1172/JCI118757

Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease.

S J McKenzie 1, M S Baker 1, G D Buffinton 1, W F Doe 1
PMCID: PMC507409  PMID: 8690784

Abstract

Evidence of in vivo oxidant-induced injury in inflammatory bowel disease (IBD) is largely indirect. Colon epithelial crypt cells (CEC) from paired specimens of histologically normal and inflamed bowel from IBD patients with active disease were examined for altered protein thiol redox status as an indicator of oxidative damage. When CEC preparations from 22 IBD patients were labeled with the reduced-thiol-specific probe [14C]-iodoacetamide (IAM), there was decreased labeling of a number of proteins indicating oxidation of thiol groups in CEC from inflamed mucosa compared to paired normal mucosa, especially the loss of thiol labeling of a 37-kD protein which was almost completely lost. The loss of reduced protein thiol status for the 37-kD band was paralleled by loss of epithelial cell glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) enzyme activity, an enzyme known to contain an essential reduced cysteine (Cys149) at the active site. The identity of the 37-kD protein as GADPH monomer was confirmed by NH2-terminal amino acid sequence analysis. To examine whether this type of in vivo injury could be attributed to biologically relevant oxidants produced by inflammatory cells, CEC prepared from normal mucosa were exposed to H2O2, OCl-, nitric oxide (NO), and a model chloramine molecule chloramine T (ChT) in vitro. Dose-dependent loss of IAM labeling and GAPDH enzyme activity was observed. The efficacy (IC50) against IAM labeling was OCl- >> ChT > H2O2 > NO (52 +/- 3, 250 +/- 17, 420 +/- 12, 779 +/- 120 microM oxidant) and OCl- >> ChT > NO > H2O2 (89 +/- 17, 256 +/- 11, 407 +/- 105, 457 +/- 75 microM oxidant), respectively, for GAPDH enzyme activity. This study provides direct evidence of in vivo oxidant injury in CEC from inflamed mucosa of IBD patients. Oxidation and inhibition of essential protein function by inflammatory cells is a potential mechanism of tissue injury that may contribute to the pathogenesis of the disease and supports the exploration of compounds with antioxidant activity as new therapies for IBD.

Full Text

The Full Text of this article is available as a PDF (211.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D. A., Buchanan J. D. Reactions of O-.2, H2O2 and other oxidants with sulfhydryl enzymes. Photochem Photobiol. 1978 Oct-Nov;28(4-5):743–755. doi: 10.1111/j.1751-1097.1978.tb07011.x. [DOI] [PubMed] [Google Scholar]
  2. Babbs C. F. Oxygen radicals in ulcerative colitis. Free Radic Biol Med. 1992;13(2):169–181. doi: 10.1016/0891-5849(92)90079-v. [DOI] [PubMed] [Google Scholar]
  3. Baker M. S., Bolis S., Lowther D. A. Oxidation of articular cartilage glyceraldehyde-3-phosphate dehydrogenase (G3PDH) occurs in vivo during carrageenin-induced arthritis. Agents Actions. 1991 Mar;32(3-4):299–304. doi: 10.1007/BF01980890. [DOI] [PubMed] [Google Scholar]
  4. Benard O., Balasubramanian K. A. Effect of oxidant exposure on thiol status in the intestinal mucosa. Biochem Pharmacol. 1993 May 25;45(10):2011–2015. doi: 10.1016/0006-2952(93)90011-k. [DOI] [PubMed] [Google Scholar]
  5. Brodie A. E., Reed D. J. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides. Arch Biochem Biophys. 1990 Jan;276(1):212–218. doi: 10.1016/0003-9861(90)90028-w. [DOI] [PubMed] [Google Scholar]
  6. Brodie A. E., Reed D. J. Reversible oxidation of glyceraldehyde 3-phosphate dehydrogenase thiols in human lung carcinoma cells by hydrogen peroxide. Biochem Biophys Res Commun. 1987 Oct 14;148(1):120–125. doi: 10.1016/0006-291x(87)91084-9. [DOI] [PubMed] [Google Scholar]
  7. Buffinton G. D., Doe W. F. Depleted mucosal antioxidant defences in inflammatory bowel disease. Free Radic Biol Med. 1995 Dec;19(6):911–918. doi: 10.1016/0891-5849(95)94362-h. [DOI] [PubMed] [Google Scholar]
  8. Dimmeler S., Lottspeich F., Brüne B. Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1992 Aug 25;267(24):16771–16774. [PubMed] [Google Scholar]
  9. Emerit J., Pelletier S., Likforman J., Pasquier C., Thuillier A. Phase II trial of copper zinc superoxide dismutase (CuZn SOD) in the treatment of Crohn's disease. Free Radic Res Commun. 1991;12-13 Pt 2:563–569. doi: 10.3109/10715769109145831. [DOI] [PubMed] [Google Scholar]
  10. Gibson P. R., van de Pol E., Maxwell L. E., Gabriel A., Doe W. F. Isolation of colonic crypts that maintain structural and metabolic viability in vitro. Gastroenterology. 1989 Feb;96(2 Pt 1):283–291. doi: 10.1016/0016-5085(89)91549-7. [DOI] [PubMed] [Google Scholar]
  11. Griffiths J. C., Sies H., Meier P. J., Akerboom T. P. Inhibition of taurocholate efflux from rat hepatic canalicular membrane vesicles by glutathione disulfide. FEBS Lett. 1987 Mar 9;213(1):34–38. doi: 10.1016/0014-5793(87)81460-6. [DOI] [PubMed] [Google Scholar]
  12. Grisham M. B., Gaginella T. S., von Ritter C., Tamai H., Be R. M., Granger D. N. Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation. 1990 Oct;14(5):531–542. doi: 10.1007/BF00914274. [DOI] [PubMed] [Google Scholar]
  13. Grisham M. B. Oxidants and free radicals in inflammatory bowel disease. Lancet. 1994 Sep 24;344(8926):859–861. doi: 10.1016/s0140-6736(94)92831-2. [DOI] [PubMed] [Google Scholar]
  14. Grisham M. B., Yamada T. Neutrophils, nitrogen oxides, and inflammatory bowel disease. Ann N Y Acad Sci. 1992;664:103–115. doi: 10.1111/j.1749-6632.1992.tb39753.x. [DOI] [PubMed] [Google Scholar]
  15. Ishikawa T., Zimmer M., Sies H. Energy-linked cardiac transport system for glutathione disulfide. FEBS Lett. 1986 May 5;200(1):128–132. doi: 10.1016/0014-5793(86)80524-5. [DOI] [PubMed] [Google Scholar]
  16. Kameyama J., Narui H., Inui M., Sato T. Energy level in large intestinal mucosa in patients with ulcerative colitis. Tohoku J Exp Med. 1984 Jun;143(2):253–254. doi: 10.1620/tjem.143.253. [DOI] [PubMed] [Google Scholar]
  17. Kots AYa, Skurat A. V., Sergienko E. A., Bulargina T. V., Severin E. S. Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett. 1992 Mar 23;300(1):9–12. doi: 10.1016/0014-5793(92)80153-8. [DOI] [PubMed] [Google Scholar]
  18. Mahida Y. R., Wu K. C., Jewell D. P. Respiratory burst activity of intestinal macrophages in normal and inflammatory bowel disease. Gut. 1989 Oct;30(10):1362–1370. doi: 10.1136/gut.30.10.1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maples K. R., Kennedy C. H., Jordan S. J., Mason R. P. In vivo thiyl free radical formation from hemoglobin following administration of hydroperoxides. Arch Biochem Biophys. 1990 Mar;277(2):402–409. doi: 10.1016/0003-9861(90)90596-q. [DOI] [PubMed] [Google Scholar]
  20. Maragos C. M., Morley D., Wink D. A., Dunams T. M., Saavedra J. E., Hoffman A., Bove A. A., Isaac L., Hrabie J. A., Keefer L. K. Complexes of .NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J Med Chem. 1991 Nov;34(11):3242–3247. doi: 10.1021/jm00115a013. [DOI] [PubMed] [Google Scholar]
  21. Markowitz M. M., Rozen P., Pero R. W., Tobi M., Miller D. G. Hydrogen peroxide induced adenosine diphosphate ribosyl transferase (ADPRT) response in patients with inflammatory bowel disease. Gut. 1988 Dec;29(12):1680–1686. doi: 10.1136/gut.29.12.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Middleton S. J., Shorthouse M., Hunter J. O. Increased nitric oxide synthesis in ulcerative colitis. Lancet. 1993 Feb 20;341(8843):465–466. doi: 10.1016/0140-6736(93)90211-x. [DOI] [PubMed] [Google Scholar]
  23. Miller M. J., Sadowska-Krowicka H., Chotinaruemol S., Kakkis J. L., Clark D. A. Amelioration of chronic ileitis by nitric oxide synthase inhibition. J Pharmacol Exp Ther. 1993 Jan;264(1):11–16. [PubMed] [Google Scholar]
  24. Niwa Y., Somiya K., Michelson A. M., Puget K. Effect of liposomal-encapsulated superoxide dismutase on active oxygen-related human disorders. A preliminary study. Free Radic Res Commun. 1985;1(2):137–153. doi: 10.3109/10715768509056547. [DOI] [PubMed] [Google Scholar]
  25. Nowak K., Wolny M., Banaś T. The complete amino acid sequence of human muscle glyceraldehyde 3-phosphate dehydrogenase. FEBS Lett. 1981 Nov 16;134(2):143–146. doi: 10.1016/0014-5793(81)80587-x. [DOI] [PubMed] [Google Scholar]
  26. O'Morain C., Smethurst P., Levi J., Peters T. J. Subcellular fractionation of rectal biopsy homogenates from patients with inflammatory bowel disease. Scand J Gastroenterol. 1985 Mar;20(2):209–214. doi: 10.3109/00365528509089659. [DOI] [PubMed] [Google Scholar]
  27. Ribbons K. A., Zhang X. J., Thompson J. H., Greenberg S. S., Moore W. M., Kornmeier C. M., Currie M. G., Lerche N., Blanchard J., Clark D. A. Potential role of nitric oxide in a model of chronic colitis in rhesus macaques. Gastroenterology. 1995 Mar;108(3):705–711. doi: 10.1016/0016-5085(95)90442-5. [DOI] [PubMed] [Google Scholar]
  28. Roediger W. E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982 Aug;83(2):424–429. [PubMed] [Google Scholar]
  29. Sartor R. B. Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology. 1994 Feb;106(2):533–539. doi: 10.1016/0016-5085(94)90614-9. [DOI] [PubMed] [Google Scholar]
  30. Schraufstatter I. U., Hinshaw D. B., Hyslop P. A., Spragg R. G., Cochrane C. G. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest. 1986 Apr;77(4):1312–1320. doi: 10.1172/JCI112436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schuppe-Koistinen I., Moldéus P., Bergman T., Cotgreave I. A. S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur J Biochem. 1994 May 1;221(3):1033–1037. doi: 10.1111/j.1432-1033.1994.tb18821.x. [DOI] [PubMed] [Google Scholar]
  32. Schuppe I., Moldéus P., Cotgreave I. A. Protein-specific S-thiolation in human endothelial cells during oxidative stress. Biochem Pharmacol. 1992 Nov 3;44(9):1757–1764. doi: 10.1016/0006-2952(92)90069-u. [DOI] [PubMed] [Google Scholar]
  33. Sies H., Akerboom T. P. Glutathione disulfide (GSSG) efflux from cells and tissues. Methods Enzymol. 1984;105:445–451. doi: 10.1016/s0076-6879(84)05062-x. [DOI] [PubMed] [Google Scholar]
  34. Simmonds N. J., Allen R. E., Stevens T. R., Van Someren R. N., Blake D. R., Rampton D. S. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology. 1992 Jul;103(1):186–196. doi: 10.1016/0016-5085(92)91112-h. [DOI] [PubMed] [Google Scholar]
  35. Williams J. G., Hughes L. E., Hallett M. B. Toxic oxygen metabolite production by circulating phagocytic cells in inflammatory bowel disease. Gut. 1990 Feb;31(2):187–193. doi: 10.1136/gut.31.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang J., Snyder S. H. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9382–9385. doi: 10.1073/pnas.89.20.9382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. von Ritter C., Grisham M. B., Hollwarth M., Inauen W., Granger D. N. Neutrophil-derived oxidants mediate formyl-methionyl-leucyl-phenylalanine-induced increases in mucosal permeability in rats. Gastroenterology. 1989 Sep;97(3):778–780. doi: 10.1016/0016-5085(89)90654-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES