Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 1;98(1):148–156. doi: 10.1172/JCI118760

Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway.

N L Eskeland 1, A Zhou 1, T Q Dinh 1, H Wu 1, R J Parmer 1, R E Mains 1, D T O'Connor 1
PMCID: PMC507411  PMID: 8690787

Abstract

Chromogranins A and B and secretogranin II are a family of acidic proteins found in neuroendocrine secretory vesicles; these proteins contain multiple potential cleavage sites for proteolytic processing by the mammalian subtilisin-like serine endoproteases PC1 and PC2 (prohormone convertases 1 and 2), and furin. We explored the role of these endoproteases in chromogranin processing in AtT-20 mouse pituitary corticotropes. Expression of inducible antisense PC1 mRNA virtually abolished PC1 immunoreactivity on immunoblots. Chromogranin A immunoblots revealed chromogranin A processing, from both the NH2 and COOH termini, in both wild-type AtT-20 and AtT-20 antisense PC1 cells. After antisense PC1 induction, an approximately 66-kD chromogranin A NH2-terminal fragment as well as the parent chromogranin A molecule accumulated, while an approximately 50 kD NH2-terminal and an approximately 30 kD COOH-terminal fragment declined in abundance. Chromogranin B and secretogranin II immunoblots showed no change after PC1 reduction. [35S]Methionine/cysteine pulse-chase metabolic labeling in AtT-20 antisense PC1 and antisense furin cells revealed reciprocal changes in secreted chromogranin A COOH-terminal fragments (increased approximately 82 kD and decreased approximately 74 kD forms, as compared with wild-type AtT-20 cells) indicating decreased cleavage, while AtT-20 cells overexpressing PC2 showed increased processing to and secretion of approximately 71 and approximately 27 kD NH2-terminal chromogranin A fragments. Antisense PC1 specifically abolished regulated secretion of both chromogranin A and beta-endorphin in response to the usual secretagogue, corticotropin-releasing hormone. Moreover, immunocytochemistry demonstrated a relative decrease of chromogranin A in processes (where regulated secretory vesicles accumulate) of AtT-20 cells overexpressing either PC1 or PC2. These results demonstrate that chromogranin A is a substrate for the endogenous endoproteases PC1 and furin in vivo, and that such processing influences its trafficking into the regulated secretory pathway; furthermore, lack of change in chromogranin B and secretogranin II cleavage after diminution of PCl suggests that the action of PC1 on chromogranin A may be specific within the chromogranin/secretogranin protein family.

Full Text

The Full Text of this article is available as a PDF (410.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aardal S., Helle K. B., Elsayed S., Reed R. K., Serck-Hanssen G. Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments. J Neuroendocrinol. 1993 Aug;5(4):405–412. doi: 10.1111/j.1365-2826.1993.tb00501.x. [DOI] [PubMed] [Google Scholar]
  2. Angle C. R., Thomas D. J., Swanson S. A. Toxicity of cadmium to rat osteosarcoma cells (ROS 17/2.8): protective effect of 1 alpha,25-dihydroxyvitamin D3. Toxicol Appl Pharmacol. 1990 Mar 15;103(1):113–120. doi: 10.1016/0041-008x(90)90267-x. [DOI] [PubMed] [Google Scholar]
  3. Arden S. D., Rutherford N. G., Guest P. C., Curry W. J., Bailyes E. M., Johnston C. F., Hutton J. C. The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2. Biochem J. 1994 Mar 15;298(Pt 3):521–528. doi: 10.1042/bj2980521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbosa J. A., Gill B. M., Takiyyuddin M. A., O'Connor D. T. Chromogranin A: posttranslational modifications in secretory granules. Endocrinology. 1991 Jan;128(1):174–190. doi: 10.1210/endo-128-1-174. [DOI] [PubMed] [Google Scholar]
  5. Bloomquist B. T., Eipper B. A., Mains R. E. Prohormone-converting enzymes: regulation and evaluation of function using antisense RNA. Mol Endocrinol. 1991 Dec;5(12):2014–2024. doi: 10.1210/mend-5-12-2014. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Breslin M. B., Lindberg I., Benjannet S., Mathis J. P., Lazure C., Seidah N. G. Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. J Biol Chem. 1993 Dec 25;268(36):27084–27093. [PubMed] [Google Scholar]
  8. Chanat E., Huttner W. B. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol. 1991 Dec;115(6):1505–1519. doi: 10.1083/jcb.115.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chanat E., Pimplikar S. W., Stinchcombe J. C., Huttner W. B. What the granins tell us about the formation of secretory granules in neuroendocrine cells. Cell Biophys. 1991 Oct-Dec;19(1-3):85–91. doi: 10.1007/BF02989882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chanat E., Weiss U., Huttner W. B., Tooze S. A. Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathways. EMBO J. 1993 May;12(5):2159–2168. doi: 10.1002/j.1460-2075.1993.tb05864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Day R., Benjannet S., Matsuuchi L., Kelly R. B., Marcinkiewicz M., Chrétien M., Seidah N. G. Maintained PC1 and PC2 expression in the AtT-20 variant cell line 6T3 lacking regulated secretion and POMC: restored POMC expression and regulated secretion after cAMP treatment. DNA Cell Biol. 1995 Feb;14(2):175–188. doi: 10.1089/dna.1995.14.175. [DOI] [PubMed] [Google Scholar]
  12. Dillen L., Miserez B., Claeys M., Aunis D., De Potter W. Posttranslational processing of proenkephalins and chromogranins/secretogranins. Neurochem Int. 1993 Apr;22(4):315–352. doi: 10.1016/0197-0186(93)90016-x. [DOI] [PubMed] [Google Scholar]
  13. Drees B. M., Rouse J., Johnson J., Hamilton J. W. Bovine parathyroid glands secrete a 26-kDa N-terminal fragment of chromogranin-A which inhibits parathyroid cell secretion. Endocrinology. 1991 Dec;129(6):3381–3387. doi: 10.1210/endo-129-6-3381. [DOI] [PubMed] [Google Scholar]
  14. Egger C., Kirchmair R., Hogue-Angeletti R., Fischer-Colbrie R., Winkler H. Different degrees of processing of secretogranin II in large dense core vesicles of bovine adrenal medulla and sympathetic axons correlate with their content of soluble PC1 and PC2. Neurosci Lett. 1993 Sep 3;159(1-2):199–201. doi: 10.1016/0304-3940(93)90833-7. [DOI] [PubMed] [Google Scholar]
  15. Fasciotto B. H., Trauss C. A., Greeley G. H., Cohn D. V. Parastatin (porcine chromogranin A347-419), a novel chromogranin A-derived peptide, inhibits parathyroid cell secretion. Endocrinology. 1993 Aug;133(2):461–466. doi: 10.1210/endo.133.2.8344192. [DOI] [PubMed] [Google Scholar]
  16. Gerdes H. H., Rosa P., Phillips E., Baeuerle P. A., Frank R., Argos P., Huttner W. B. The primary structure of human secretogranin II, a widespread tyrosine-sulfated secretory granule protein that exhibits low pH- and calcium-induced aggregation. J Biol Chem. 1989 Jul 15;264(20):12009–12015. [PubMed] [Google Scholar]
  17. Gill B. M., Barbosa J. A., Hogue-Angeletti R., Varki N., O'Connor D. T. Chromogranin A epitopes: clues from synthetic peptides and peptide mapping. Neuropeptides. 1992 Feb;21(2):105–118. doi: 10.1016/0143-4179(92)90521-w. [DOI] [PubMed] [Google Scholar]
  18. Grimes M., Iacangelo A., Eiden L. E., Godfrey B., Herbert E. Chromogranin A: the primary structure deduced from cDNA clones reveals the presence of pairs of basic amino acids. Ann N Y Acad Sci. 1987;493:351–378. doi: 10.1111/j.1749-6632.1987.tb27218.x. [DOI] [PubMed] [Google Scholar]
  19. Hoflehner J., Eder U., Laslop A., Seidah N. G., Fischer-Colbrie R., Winkler H. Processing of secretogranin II by prohormone convertases: importance of PC1 in generation of secretoneurin. FEBS Lett. 1995 Mar 6;360(3):294–298. doi: 10.1016/0014-5793(95)00127-u. [DOI] [PubMed] [Google Scholar]
  20. Horiba N., Nicholson W. E., Ch'ng J. L., Orth D. N. Chromogranin A does not mediate glucocorticoid inhibition of adrenocorticotropin secretion. Endocrinology. 1993 Apr;132(4):1585–1592. doi: 10.1210/endo.132.4.8384991. [DOI] [PubMed] [Google Scholar]
  21. Huttner W. B., Gerdes H. H., Rosa P. The granin (chromogranin/secretogranin) family. Trends Biochem Sci. 1991 Jan;16(1):27–30. doi: 10.1016/0968-0004(91)90012-k. [DOI] [PubMed] [Google Scholar]
  22. Iacangelo A. L., Fischer-Colbrie R., Koller K. J., Brownstein M. J., Eiden L. E. The sequence of porcine chromogranin A messenger RNA demonstrates chromogranin A can serve as the precursor for the biologically active hormone, pancreastatin. Endocrinology. 1988 May;122(5):2339–2341. doi: 10.1210/endo-122-5-2339. [DOI] [PubMed] [Google Scholar]
  23. Ishizuka J., Tatemoto K., Cohn D. V., Thompson J. C., Greeley G. H., Jr Effects of pancreastatin and chromogranin A on insulin release stimulated by various insulinotropic agents. Regul Pept. 1991 Jun 11;34(1):25–32. doi: 10.1016/0167-0115(91)90221-2. [DOI] [PubMed] [Google Scholar]
  24. Jung L. J., Kreiner T., Scheller R. H. Expression of mutant ELH prohormones in AtT-20 cells: the relationship between prohormone processing and sorting. J Cell Biol. 1993 Apr;121(1):11–21. doi: 10.1083/jcb.121.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jung L. J., Kreiner T., Scheller R. H. Prohormone structure governs proteolytic processing and sorting in the Golgi complex. Recent Prog Horm Res. 1993;48:415–436. doi: 10.1016/b978-0-12-571148-7.50019-1. [DOI] [PubMed] [Google Scholar]
  26. Keller-Wood M. E., Dallman M. F. Corticosteroid inhibition of ACTH secretion. Endocr Rev. 1984 Winter;5(1):1–24. doi: 10.1210/edrv-5-1-1. [DOI] [PubMed] [Google Scholar]
  27. Lindberg I. The new eukaryotic precursor processing proteinases. Mol Endocrinol. 1991 Oct;5(10):1361–1365. doi: 10.1210/mend-5-10-1361. [DOI] [PubMed] [Google Scholar]
  28. Metz-Boutigue M. H., Garcia-Sablone P., Hogue-Angeletti R., Aunis D. Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem. 1993 Oct 1;217(1):247–257. doi: 10.1111/j.1432-1033.1993.tb18240.x. [DOI] [PubMed] [Google Scholar]
  29. Mgbonyebi O. P., Smothers C. T., Mrotek J. J. Modulation of adrenal cell functions by cadmium salts. 1. Cadmium chloride effects on basal and ACTH-stimulated steroidogenesis. Cell Biol Toxicol. 1993 Jul-Sep;9(3):223–234. doi: 10.1007/BF00755601. [DOI] [PubMed] [Google Scholar]
  30. Milgram S. L., Johnson R. C., Mains R. E. Expression of individual forms of peptidylglycine alpha-amidating monooxygenase in AtT-20 cells: endoproteolytic processing and routing to secretory granules. J Cell Biol. 1992 May;117(4):717–728. doi: 10.1083/jcb.117.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Milgram S. L., Mains R. E. Differential effects of temperature blockade on the proteolytic processing of three secretory granule-associated proteins. J Cell Sci. 1994 Mar;107(Pt 3):737–745. doi: 10.1242/jcs.107.3.737. [DOI] [PubMed] [Google Scholar]
  32. Parmer R. J., Koop A. H., Handa M. T., O'Connor D. T. Molecular cloning of chromogranin A from rat pheochromocytoma cells. Hypertension. 1989 Oct;14(4):435–444. doi: 10.1161/01.hyp.14.4.435. [DOI] [PubMed] [Google Scholar]
  33. Parmer R. J., Xi X. P., Wu H. J., Helman L. J., Petz L. N. Secretory protein traffic. Chromogranin A contains a dominant targeting signal for the regulated pathway. J Clin Invest. 1993 Aug;92(2):1042–1054. doi: 10.1172/JCI116609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reiffen F. U., Gratzl M. Chromogranins, widespread in endocrine and nervous tissue, bind Ca2+. FEBS Lett. 1986 Jan 20;195(1-2):327–330. doi: 10.1016/0014-5793(86)80187-9. [DOI] [PubMed] [Google Scholar]
  35. Rosa P., Hille A., Lee R. W., Zanini A., De Camilli P., Huttner W. B. Secretogranins I and II: two tyrosine-sulfated secretory proteins common to a variety of cells secreting peptides by the regulated pathway. J Cell Biol. 1985 Nov;101(5 Pt 1):1999–2011. doi: 10.1083/jcb.101.5.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rozansky D. J., Wu H., Tang K., Parmer R. J., O'Connor D. T. Glucocorticoid activation of chromogranin A gene expression. Identification and characterization of a novel glucocorticoid response element. J Clin Invest. 1994 Dec;94(6):2357–2368. doi: 10.1172/JCI117601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Seidah N. G., Chrétien M. Pro-protein convertases of subtilisin/kexin family. Methods Enzymol. 1994;244:175–188. doi: 10.1016/0076-6879(94)44015-8. [DOI] [PubMed] [Google Scholar]
  38. Seidah N. G., Day R., Chrétien M. The family of pro-hormone and pro-protein convertases. Biochem Soc Trans. 1993 Aug;21(3):685–691. doi: 10.1042/bst0210685. [DOI] [PubMed] [Google Scholar]
  39. Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992 Nov 25;267(33):23435–23438. [PubMed] [Google Scholar]
  40. Takiyyuddin M. A., De Nicola L., Gabbai F. B., Dinh T. Q., Kennedy B., Ziegler M. G., Sabban E. L., Parmer R. J., O'Connor D. T. Catecholamine secretory vesicles. Augmented chromogranins and amines in secondary hypertension. Hypertension. 1993 May;21(5):674–679. doi: 10.1161/01.hyp.21.5.674. [DOI] [PubMed] [Google Scholar]
  41. Tatemoto K., Efendić S., Mutt V., Makk G., Feistner G. J., Barchas J. D. Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature. 1986 Dec 4;324(6096):476–478. doi: 10.1038/324476a0. [DOI] [PubMed] [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wand G. S., Takiyyuddin M., O'Connor D. T., Levine M. A. A proposed role for chromogranin A as a glucocorticoid-responsive autocrine inhibitor of proopiomelanocortin secretion. Endocrinology. 1991 Mar;128(3):1345–1351. doi: 10.1210/endo-128-3-1345. [DOI] [PubMed] [Google Scholar]
  44. Watkinson A., Rogers M., Dockray G. J. Post-translational processing of chromogranin A: differential distribution of phosphorylated variants of pancreastatin and fragments 248-313 and 297-313 in bovine pancreas and ileum. Biochem J. 1993 Nov 1;295(Pt 3):649–654. doi: 10.1042/bj2950649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Winkler H., Fischer-Colbrie R. The chromogranins A and B: the first 25 years and future perspectives. Neuroscience. 1992 Aug;49(3):497–528. doi: 10.1016/0306-4522(92)90222-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wohlfarter T., Fischer-Colbrie R., Hogue-Angeletti R., Eiden L. E., Winkler H. Processing of chromogranin A within chromaffin granules starts at C- and N-terminal cleavage sites. FEBS Lett. 1988 Apr 11;231(1):67–70. doi: 10.1016/0014-5793(88)80704-x. [DOI] [PubMed] [Google Scholar]
  47. Wu H. J., Rozansky D. J., Parmer R. J., Gill B. M., O'Connor D. T. Structure and function of the chromogranin A gene. Clues to evolution and tissue-specific expression. J Biol Chem. 1991 Jul 15;266(20):13130–13134. [PubMed] [Google Scholar]
  48. Zhou A., Bloomquist B. T., Mains R. E. The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. J Biol Chem. 1993 Jan 25;268(3):1763–1769. [PubMed] [Google Scholar]
  49. Zhou A., Mains R. E. Endoproteolytic processing of proopiomelanocortin and prohormone convertases 1 and 2 in neuroendocrine cells overexpressing prohormone convertases 1 or 2. J Biol Chem. 1994 Jul 1;269(26):17440–17447. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES