Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 1;98(1):207–215. doi: 10.1172/JCI118768

Ceruloplasmin gene expression in the murine central nervous system.

L W Klomp 1, Z S Farhangrazi 1, L L Dugan 1, J D Gitlin 1
PMCID: PMC507418  PMID: 8690795

Abstract

Aceruloplasminemia is an autosomal recessive disorder resulting in neurodegeneration of the retina and basal ganglia in association with iron accumulation in these tissues. To begin to define the mechanisms of central nervous system iron accumulation and neuronal loss in this disease, cDNA clones encoding murine ceruloplasmin were isolated and characterized. RNA blot analysis using these clones detected a 3.7-kb ceruloplasmin-specific transcript in multiple murine tissues including the eye and several regions of the brain. In situ hybridization of systemic tissues revealed cell-specific ceruloplasmin gene expression in hepatocytes, the splenic reticuloendothelial system and the bronchiolar epithelium of the lung. In the central nervous system, abundant ceruloplasmin gene expression was detected in specific populations of astrocytes within the retina and the brain as well as the epithelium of the choroid plexus. Analysis of primary cell cultures confirmed that astrocytes expressed ceruloplasmin mRNA and biosynthetic studies revealed synthesis and secretion of ceruloplasmin by these cells. Taken together these results demonstrate abundant cell-specific ceruloplasmin expression within the central nervous system which may account for the unique clinical and pathologic findings observed in patients with aceruloplasminemia.

Full Text

The Full Text of this article is available as a PDF (908.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldred A. R., Brack C. M., Schreiber G. The cerebral expression of plasma protein genes in different species. Comp Biochem Physiol B Biochem Mol Biol. 1995 May;111(1):1–15. doi: 10.1016/0305-0491(94)00229-n. [DOI] [PubMed] [Google Scholar]
  2. Aldred A. R., Grimes A., Schreiber G., Mercer J. F. Rat ceruloplasmin. Molecular cloning and gene expression in liver, choroid plexus, yolk sac, placenta, and testis. J Biol Chem. 1987 Feb 25;262(6):2875–2878. [PubMed] [Google Scholar]
  3. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell. 1994 Jan 28;76(2):403–410. doi: 10.1016/0092-8674(94)90346-8. [DOI] [PubMed] [Google Scholar]
  4. Beard J. L., Connor J. R., Jones B. C. Iron in the brain. Nutr Rev. 1993 Jun;51(6):157–170. doi: 10.1111/j.1753-4887.1993.tb03096.x. [DOI] [PubMed] [Google Scholar]
  5. Bloch B., Popovici T., Levin M. J., Tuil D., Kahn A. Transferrin gene expression visualized in oligodendrocytes of the rat brain by using in situ hybridization and immunohistochemistry. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6706–6710. doi: 10.1073/pnas.82.19.6706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradbury M. W. The structure and function of the blood-brain barrier. Fed Proc. 1984 Feb;43(2):186–190. [PubMed] [Google Scholar]
  7. Bull P. C., Thomas G. R., Rommens J. M., Forbes J. R., Cox D. W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993 Dec;5(4):327–337. doi: 10.1038/ng1293-327. [DOI] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Connor J. R., Benkovic S. A. Iron regulation in the brain: histochemical, biochemical, and molecular considerations. Ann Neurol. 1992;32 (Suppl):S51–S61. doi: 10.1002/ana.410320710. [DOI] [PubMed] [Google Scholar]
  10. Cornelissen C. N., Sparling P. F. Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol Microbiol. 1994 Dec;14(5):843–850. doi: 10.1111/j.1365-2958.1994.tb01320.x. [DOI] [PubMed] [Google Scholar]
  11. Craven C. M., Alexander J., Eldridge M., Kushner J. P., Bernstein S., Kaplan J. Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proc Natl Acad Sci U S A. 1987 May;84(10):3457–3461. doi: 10.1073/pnas.84.10.3457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daimon M., Kato T., Kawanami T., Tominaga M., Igarashi M., Yamatani K., Sasaki H. A nonsense mutation of the ceruloplasmin gene in hereditary ceruloplasmin deficiency with diabetes mellitus. Biochem Biophys Res Commun. 1995 Dec 5;217(1):89–95. doi: 10.1006/bbrc.1995.2749. [DOI] [PubMed] [Google Scholar]
  13. Dallman P. R., Spirito R. A. Brain iron in the rat: extremely slow turnover in normal rats may explain long-lasting effects of early iron deficiency. J Nutr. 1977 Jun;107(6):1075–1081. doi: 10.1093/jn/107.6.1075. [DOI] [PubMed] [Google Scholar]
  14. Dexter D. T., Jenner P., Schapira A. H., Marsden C. D. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson's Disease Research Group. Ann Neurol. 1992;32 (Suppl):S94–100. doi: 10.1002/ana.410320716. [DOI] [PubMed] [Google Scholar]
  15. Dugan L. L., Bruno V. M., Amagasu S. M., Giffard R. G. Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity. J Neurosci. 1995 Jun;15(6):4545–4555. doi: 10.1523/JNEUROSCI.15-06-04545.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dwork A. J., Lawler G., Zybert P. A., Durkin M., Osman M., Willson N., Barkai A. I. An autoradiographic study of the uptake and distribution of iron by the brain of the young rat. Brain Res. 1990 Jun 4;518(1-2):31–39. doi: 10.1016/0006-8993(90)90950-g. [DOI] [PubMed] [Google Scholar]
  17. Ehrenwald E., Chisolm G. M., Fox P. L. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J Clin Invest. 1994 Apr;93(4):1493–1501. doi: 10.1172/JCI117127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ehrenwald E., Fox P. L. Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells. J Clin Invest. 1996 Feb 1;97(3):884–890. doi: 10.1172/JCI118491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fleming R. E., Gitlin J. D. Primary structure of rat ceruloplasmin and analysis of tissue-specific gene expression during development. J Biol Chem. 1990 May 5;265(13):7701–7707. [PubMed] [Google Scholar]
  20. Fleming R. E., Whitman I. P., Gitlin J. D. Induction of ceruloplasmin gene expression in rat lung during inflammation and hyperoxia. Am J Physiol. 1991 Feb;260(2 Pt 1):L68–L74. doi: 10.1152/ajplung.1991.260.2.L68. [DOI] [PubMed] [Google Scholar]
  21. Gelman B. B. Iron in CNS disease. J Neuropathol Exp Neurol. 1995 Jul;54(4):477–486. doi: 10.1097/00005072-199507000-00001. [DOI] [PubMed] [Google Scholar]
  22. Gitlin J. D., Schroeder J. J., Lee-Ambrose L. M., Cousins R. J. Mechanisms of caeruloplasmin biosynthesis in normal and copper-deficient rats. Biochem J. 1992 Mar 15;282(Pt 3):835–839. doi: 10.1042/bj2820835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gitlin J. D. Transcriptional regulation of ceruloplasmin gene expression during inflammation. J Biol Chem. 1988 May 5;263(13):6281–6287. [PubMed] [Google Scholar]
  24. Gordeuk V. R., McLaren G. D., Samowitz W. Etiologies, consequences, and treatment of iron overload. Crit Rev Clin Lab Sci. 1994;31(2):89–133. doi: 10.3109/10408369409084674. [DOI] [PubMed] [Google Scholar]
  25. Gutteridge J. M. Plasma ascorbate levels and inhibition of the antioxidant activity of caeruloplasmin. Clin Sci (Lond) 1991 Sep;81(3):413–417. doi: 10.1042/cs0810413. [DOI] [PubMed] [Google Scholar]
  26. Hackett B. P., Brody S. L., Liang M., Zeitz I. D., Bruns L. A., Gitlin J. D. Primary structure of hepatocyte nuclear factor/forkhead homologue 4 and characterization of gene expression in the developing respiratory and reproductive epithelium. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4249–4253. doi: 10.1073/pnas.92.10.4249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Harris Z. L., Takahashi Y., Miyajima H., Serizawa M., MacGillivray R. T., Gitlin J. D. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2539–2543. doi: 10.1073/pnas.92.7.2539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jaeger J. L., Shimizu N., Gitlin J. D. Tissue-specific ceruloplasmin gene expression in the mammary gland. Biochem J. 1991 Dec 15;280(Pt 3):671–677. doi: 10.1042/bj2800671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Logan J. I., Harveyson K. B., Wisdom G. B., Hughes A. E., Archbold G. P. Hereditary caeruloplasmin deficiency, dementia and diabetes mellitus. QJM. 1994 Nov;87(11):663–670. [PubMed] [Google Scholar]
  30. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Miyajima H., Nishimura Y., Mizoguchi K., Sakamoto M., Shimizu T., Honda N. Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology. 1987 May;37(5):761–767. doi: 10.1212/wnl.37.5.761. [DOI] [PubMed] [Google Scholar]
  32. Miyajima H., Takahashi Y., Serizawa M., Kaneko E., Gitlin J. D. Increased plasma lipid peroxidation in patients with aceruloplasminemia. Free Radic Biol Med. 1996;20(5):757–760. doi: 10.1016/0891-5849(95)02178-7. [DOI] [PubMed] [Google Scholar]
  33. Morita H., Ikeda S., Yamamoto K., Morita S., Yoshida K., Nomoto S., Kato M., Yanagisawa N. Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann Neurol. 1995 May;37(5):646–656. doi: 10.1002/ana.410370515. [DOI] [PubMed] [Google Scholar]
  34. Musci G., Bonaccorsi di Patti M. C., Fagiolo U., Calabrese L. Age-related changes in human ceruloplasmin. Evidence for oxidative modifications. J Biol Chem. 1993 Jun 25;268(18):13388–13395. [PubMed] [Google Scholar]
  35. Osaki S., Johnson D. A. Mobilization of liver iron by ferroxidase (ceruloplasmin). J Biol Chem. 1969 Oct 25;244(20):5757–5758. [PubMed] [Google Scholar]
  36. Pacht E. R., Davis W. B. Role of transferrin and ceruloplasmin in antioxidant activity of lung epithelial lining fluid. J Appl Physiol (1985) 1988 May;64(5):2092–2099. doi: 10.1152/jappl.1988.64.5.2092. [DOI] [PubMed] [Google Scholar]
  37. Roeser H. P., Lee G. R., Nacht S., Cartwright G. E. The role of ceruloplasmin in iron metabolism. J Clin Invest. 1970 Dec;49(12):2408–2417. doi: 10.1172/JCI106460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sarthy P. V., Fu M., Huang J. Subcellular localization of an intermediate filament protein and its mRNA in glial cells. Mol Cell Biol. 1989 Oct;9(10):4556–4559. doi: 10.1128/mcb.9.10.4556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sato M., Gitlin J. D. Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin. J Biol Chem. 1991 Mar 15;266(8):5128–5134. [PubMed] [Google Scholar]
  41. Swaiman K. F. Hallervorden-Spatz syndrome and brain iron metabolism. Arch Neurol. 1991 Dec;48(12):1285–1293. doi: 10.1001/archneur.1991.00530240091029. [DOI] [PubMed] [Google Scholar]
  42. Takahashi N., Ortel T. L., Putnam F. W. Single-chain structure of human ceruloplasmin: the complete amino acid sequence of the whole molecule. Proc Natl Acad Sci U S A. 1984 Jan;81(2):390–394. doi: 10.1073/pnas.81.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Takahashi Y., Miyajima H., Shirabe S., Nagataki S., Suenaga A., Gitlin J. D. Characterization of a nonsense mutation in the ceruloplasmin gene resulting in diabetes and neurodegenerative disease. Hum Mol Genet. 1996 Jan;5(1):81–84. doi: 10.1093/hmg/5.1.81. [DOI] [PubMed] [Google Scholar]
  44. Tanzi R. E., Petrukhin K., Chernov I., Pellequer J. L., Wasco W., Ross B., Romano D. M., Parano E., Pavone L., Brzustowicz L. M. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet. 1993 Dec;5(4):344–350. doi: 10.1038/ng1293-344. [DOI] [PubMed] [Google Scholar]
  45. Yamaguchi Y., Heiny M. E., Gitlin J. D. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun. 1993 Nov 30;197(1):271–277. doi: 10.1006/bbrc.1993.2471. [DOI] [PubMed] [Google Scholar]
  46. Yang F. M., Friedrichs W. E., Cupples R. L., Bonifacio M. J., Sanford J. A., Horton W. A., Bowman B. H. Human ceruloplasmin. Tissue-specific expression of transcripts produced by alternative splicing. J Biol Chem. 1990 Jun 25;265(18):10780–10785. [PubMed] [Google Scholar]
  47. Yang F., Friedrichs W. E., deGraffenried L., Herbert D. C., Weaker F. J., Bowman B. H., Coalson J. J. Cellular expression of ceruloplasmin in baboon and mouse lung during development and inflammation. Am J Respir Cell Mol Biol. 1996 Feb;14(2):161–169. doi: 10.1165/ajrcmb.14.2.8630266. [DOI] [PubMed] [Google Scholar]
  48. Yoshida K., Furihata K., Takeda S., Nakamura A., Yamamoto K., Morita H., Hiyamuta S., Ikeda S., Shimizu N., Yanagisawa N. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet. 1995 Mar;9(3):267–272. doi: 10.1038/ng0395-267. [DOI] [PubMed] [Google Scholar]
  49. Yuan D. S., Stearman R., Dancis A., Dunn T., Beeler T., Klausner R. D. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2632–2636. doi: 10.1073/pnas.92.7.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zahs K. R., Bigornia V., Deschepper C. F. Characterization of "plasma proteins" secreted by cultured rat macroglial cells. Glia. 1993 Feb;7(2):121–133. doi: 10.1002/glia.440070202. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES