Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 1;98(1):216–224. doi: 10.1172/JCI118769

Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts.

M G Klug 1, M H Soonpaa 1, G Y Koh 1, L J Field 1
PMCID: PMC507419  PMID: 8690796

Abstract

This study describes a simple approach to generate relatively pure cultures of cardiomyocytes from differentiating murine embryonic stem (ES) cells. A fusion gene consisting of the alpha-cardiac myosin heavy chain promoter and a cDNA encoding aminoglycoside phosphotransferase was stably transfected into pluripotent ES cells. The resulting cell lines were differentiated in vitro and subjected to G418 selection. Immunocytological and ultrastructural analyses demonstrated that the selected cardiomyocyte cultures (> 99% pure) were highly differentiated. G418 selected cardiomyocytes were tested for their ability to form grafts in the hearts of adult dystrophic mice. The fate of the engrafted cells was monitored by antidystrophin immunohistology, as well as by PCR analysis with primers specific for the myosin heavy chain-aminoglycoside phosphotransferase transgene. Both analyses revealed the presence of ES-derived cardiomyocyte grafts for as long as 7 wk after implantation, the latest time point analyzed. These studies indicate that a simple genetic manipulation can be used to select essentially pure cultures of cardiomyocytes from differentiating ES cells. Moreover, the resulting cardiomyocytes are suitable for the formation of intracardiac grafts. This selection approach should be applicable to all ES-derived cell lineages.

Full Text

The Full Text of this article is available as a PDF (607.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boer P. H. Activation of the gene for type-b natriuretic factor in mouse stem cell cultures induced for cardiac myogenesis. Biochem Biophys Res Commun. 1994 Mar 15;199(2):954–961. doi: 10.1006/bbrc.1994.1322. [DOI] [PubMed] [Google Scholar]
  2. Chiu R. C., Zibaitis A., Kao R. L. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg. 1995 Jul;60(1):12–18. [PubMed] [Google Scholar]
  3. Danko I., Chapman V., Wolff J. A. The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy. Pediatr Res. 1992 Jul;32(1):128–131. doi: 10.1203/00006450-199207000-00025. [DOI] [PubMed] [Google Scholar]
  4. Delcarpio J. B., Claycomb W. C. Cardiomyocyte transfer into the mammalian heart. Cell-to-cell interactions in vivo and in vitro. Ann N Y Acad Sci. 1995 Mar 27;752:267–285. doi: 10.1111/j.1749-6632.1995.tb17437.x. [DOI] [PubMed] [Google Scholar]
  5. Doetschman T. C., Eistetter H., Katz M., Schmidt W., Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985 Jun;87:27–45. [PubMed] [Google Scholar]
  6. Field L. J. Transgenic mice in cardiovascular research. Annu Rev Physiol. 1993;55:97–114. doi: 10.1146/annurev.ph.55.030193.000525. [DOI] [PubMed] [Google Scholar]
  7. Ganim J. R., Luo W., Ponniah S., Grupp I., Kim H. W., Ferguson D. G., Kadambi V., Neumann J. C., Doetschman T., Kranias E. G. Mouse phospholamban gene expression during development in vivo and in vitro. Circ Res. 1992 Nov;71(5):1021–1030. doi: 10.1161/01.res.71.5.1021. [DOI] [PubMed] [Google Scholar]
  8. Gulick J., Subramaniam A., Neumann J., Robbins J. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem. 1991 May 15;266(14):9180–9185. [PubMed] [Google Scholar]
  9. Klug M. G., Soonpaa M. H., Field L. J. DNA synthesis and multinucleation in embryonic stem cell-derived cardiomyocytes. Am J Physiol. 1995 Dec;269(6 Pt 2):H1913–H1921. doi: 10.1152/ajpheart.1995.269.6.H1913. [DOI] [PubMed] [Google Scholar]
  10. Koh G. Y., Kim S. J., Klug M. G., Park K., Soonpaa M. H., Field L. J. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis. J Clin Invest. 1995 Jan;95(1):114–121. doi: 10.1172/JCI117627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koh G. Y., Klug M. G., Soonpaa M. H., Field L. J. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest. 1993 Sep;92(3):1548–1554. doi: 10.1172/JCI116734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koh G. Y., Soonpaa M. H., Klug M. G., Field L. J. Long-term survival of AT-1 cardiomyocyte grafts in syngeneic myocardium. Am J Physiol. 1993 May;264(5 Pt 2):H1727–H1733. doi: 10.1152/ajpheart.1993.264.5.H1727. [DOI] [PubMed] [Google Scholar]
  13. Koh G. Y., Soonpaa M. H., Klug M. G., Pride H. P., Cooper B. J., Zipes D. P., Field L. J. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J Clin Invest. 1995 Oct;96(4):2034–2042. doi: 10.1172/JCI118251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maltsev V. A., Rohwedel J., Hescheler J., Wobus A. M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev. 1993 Nov;44(1):41–50. doi: 10.1016/0925-4773(93)90015-p. [DOI] [PubMed] [Google Scholar]
  15. Metzger J. M., Lin W. I., Samuelson L. C. Transition in cardiac contractile sensitivity to calcium during the in vitro differentiation of mouse embryonic stem cells. J Cell Biol. 1994 Aug;126(3):701–711. doi: 10.1083/jcb.126.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller-Hance W. C., LaCorbiere M., Fuller S. J., Evans S. M., Lyons G., Schmidt C., Robbins J., Chien K. R. In vitro chamber specification during embryonic stem cell cardiogenesis. Expression of the ventricular myosin light chain-2 gene is independent of heart tube formation. J Biol Chem. 1993 Nov 25;268(33):25244–25252. [PubMed] [Google Scholar]
  17. Mortensen R. M., Conner D. A., Chao S., Geisterfer-Lowrance A. A., Seidman J. G. Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol. 1992 May;12(5):2391–2395. doi: 10.1128/mcb.12.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Muthuchamy M., Pajak L., Howles P., Doetschman T., Wieczorek D. F. Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos. Mol Cell Biol. 1993 Jun;13(6):3311–3323. doi: 10.1128/mcb.13.6.3311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Soonpaa M. H., Koh G. Y., Klug M. G., Field L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science. 1994 Apr 1;264(5155):98–101. doi: 10.1126/science.8140423. [DOI] [PubMed] [Google Scholar]
  20. Steinhelper M. E., Cochrane K. L., Field L. J. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990 Sep;16(3):301–307. doi: 10.1161/01.hyp.16.3.301. [DOI] [PubMed] [Google Scholar]
  21. Sánchez A., Jones W. K., Gulick J., Doetschman T., Robbins J. Myosin heavy chain gene expression in mouse embryoid bodies. An in vitro developmental study. J Biol Chem. 1991 Nov 25;266(33):22419–22426. [PubMed] [Google Scholar]
  22. Thomson J. A., Kalishman J., Golos T. G., Durning M., Harris C. P., Becker R. A., Hearn J. P. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7844–7848. doi: 10.1073/pnas.92.17.7844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wobus A. M., Wallukat G., Hescheler J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation. 1991 Dec;48(3):173–182. doi: 10.1111/j.1432-0436.1991.tb00255.x. [DOI] [PubMed] [Google Scholar]
  24. Zeller R., Bloch K. D., Williams B. S., Arceci R. J., Seidman C. E. Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev. 1987 Sep;1(7):693–698. doi: 10.1101/gad.1.7.693. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES