Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 15;98(2):244–250. doi: 10.1172/JCI118785

1H-NMR detectable fatty acyl chain unsaturation in excised leiomyosarcoma correlate with grade and mitotic activity.

S Singer 1, M Sivaraja 1, K Souza 1, K Millis 1, J M Corson 1
PMCID: PMC507423  PMID: 8755630

Abstract

We report on the use of 1H-NMR two-dimensional total correlated spectroscopy (2D TOCSY) at 600 MHz for an ex vivo analysis of fatty acyl chain lipid in normal smooth muscle and a series of primary retroperitoneal leiomyosarcomas. These TOCSY spectra were used to identify and quantitate the methylene protons situated between unsaturated site protons (D) to those bordered by only one unsaturated site proton (C). The D/C cross-peak volume ratios determined for oleic (18:1), linoleic (18:2), linolenic (18:3), and arachidonic (20:4) acids were 0.0, 1.3, 2.7, and 4.0, respectively, suggesting that this ratio can be a measure of the degree of unsaturation for fatty acyl chains of lipids. The D/C cross-peak volume ratio was found to be proportional to the mean mitotic activity (r = 0.94) in nine smooth muscle tissues. These results suggest, that for leiomyosarcoma, the degree of fatty acyl unsaturation may be an important determinant of the metastatic potential of these tumors. Furthermore, application of TOCSY for the ex vivo study of smooth muscle tumors would potentially serve as a pathologist-independent and quantitative method for assessment of leiomyosarcoma grade and mitotic activity thereby rendering a more accurate staging of patients.

Full Text

The Full Text of this article is available as a PDF (171.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvegård T. A., Berg N. O. Histopathology peer review of high-grade soft tissue sarcoma: the Scandinavian Sarcoma Group experience. J Clin Oncol. 1989 Dec;7(12):1845–1851. doi: 10.1200/JCO.1989.7.12.1845. [DOI] [PubMed] [Google Scholar]
  2. Arús C., Westler W. M., Bárány M., Markley J. L. Observation of the terminal methyl group in fatty acids of the linolenic series by a new 1H NMR pulse sequence providing spectral editing and solvent suppression. Application to excised frog muscle and rat brain. Biochemistry. 1986 Jun 3;25(11):3346–3351. doi: 10.1021/bi00359a038. [DOI] [PubMed] [Google Scholar]
  3. Behar K. L., Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med. 1993 Jul;30(1):38–44. doi: 10.1002/mrm.1910300107. [DOI] [PubMed] [Google Scholar]
  4. Burns C. P., Luttenegger D. G., Dudley D. T., Buettner G. R., Spector A. A. Effect of modification of plasma membrane fatty acid composition on fluidity and methotrexate transport in L1210 murine leukemia cells. Cancer Res. 1979 May;39(5):1726–1732. [PubMed] [Google Scholar]
  5. Burns C. P. Membranes and cancer chemotherapy. Cancer Invest. 1988;6(4):439–451. doi: 10.3109/07357908809080073. [DOI] [PubMed] [Google Scholar]
  6. Burns C. P., North J. A. Adriamycin transport and sensitivity in fatty acid-modified leukemia cells. Biochim Biophys Acta. 1986 Aug 29;888(1):10–17. doi: 10.1016/0167-4889(86)90064-9. [DOI] [PubMed] [Google Scholar]
  7. Burns C. P., Spector A. A. Membrane fatty acid modification in tumor cells: a potential therapeutic adjunct. Lipids. 1987 Mar;22(3):178–184. doi: 10.1007/BF02537299. [DOI] [PubMed] [Google Scholar]
  8. Bárány M., Venkatasubramanian P. N., Mok E., Siegel I. M., Abraham E., Wycliffe N. D., Mafee M. F. Quantitative and qualitative fat analysis in human leg muscle of neuromuscular diseases by 1H MR spectroscopy in vivo. Magn Reson Med. 1989 May;10(2):210–226. doi: 10.1002/mrm.1910100206. [DOI] [PubMed] [Google Scholar]
  9. Coindre J. M., Trojani M., Contesso G., David M., Rouesse J., Bui N. B., Bodaert A., De Mascarel I., De Mascarel A., Goussot J. F. Reproducibility of a histopathologic grading system for adult soft tissue sarcoma. Cancer. 1986 Jul 15;58(2):306–309. doi: 10.1002/1097-0142(19860715)58:2<306::aid-cncr2820580216>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  10. Dahiya R., Boyle B., Goldberg B. C., Yoon W. H., Konety B., Chen K., Yen T. S., Blumenfeld W., Narayan P. Metastasis-associated alterations in phospholipids and fatty acids of human prostatic adenocarcinoma cell lines. Biochem Cell Biol. 1992 Jul;70(7):548–554. doi: 10.1139/o92-085. [DOI] [PubMed] [Google Scholar]
  11. Gao X., Honn K. V. Biological properties of 12(S)-HETE in cancer metastasis. Adv Prostaglandin Thromboxane Leukot Res. 1995;23:439–444. [PubMed] [Google Scholar]
  12. Guffy M. M., North J. A., Burns C. P. Effect of cellular fatty acid alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells. Cancer Res. 1984 May;44(5):1863–1866. [PubMed] [Google Scholar]
  13. Lean C. L., Mackinnon W. B., Delikatny E. J., Whitehead R. H., Mountford C. E. Cell-surface fucosylation and magnetic resonance spectroscopy characterization of human malignant colorectal cells. Biochemistry. 1992 Nov 17;31(45):11095–11105. doi: 10.1021/bi00160a020. [DOI] [PubMed] [Google Scholar]
  14. Mackinnon W. B., Huschtscha L., Dent K., Hancock R., Paraskeva C., Mountford C. E. Correlation of cellular differentiation in human colorectal carcinoma and adenoma cell lines with metabolite profiles determined by 1H magnetic resonance spectroscopy. Int J Cancer. 1994 Oct 15;59(2):248–261. doi: 10.1002/ijc.2910590218. [DOI] [PubMed] [Google Scholar]
  15. May G. L., Wright L. C., Holmes K. T., Williams P. G., Smith I. C., Wright P. E., Fox R. M., Mountford C. E. Assignment of methylene proton resonances in NMR spectra of embryonic and transformed cells to plasma membrane triglyceride. J Biol Chem. 1986 Mar 5;261(7):3048–3053. [PubMed] [Google Scholar]
  16. McDonald C. C., Phillips W. D. Proton magnetic resonance spectra of proteins in random-coil configurations. J Am Chem Soc. 1969 Mar 12;91(6):1513–1521. doi: 10.1021/ja01034a039. [DOI] [PubMed] [Google Scholar]
  17. Rose D. P., Connolly J. M., Rayburn J., Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst. 1995 Apr 19;87(8):587–592. doi: 10.1093/jnci/87.8.587. [DOI] [PubMed] [Google Scholar]
  18. Sivaraja M., Turner C., Souza K., Singer S. Ex vivo two-dimensional proton nuclear magnetic resonance spectroscopy of smooth muscle tumors: advantages of total correlated spectroscopy over homonuclear J-correlated spectroscopy. Cancer Res. 1994 Dec 1;54(23):6037–6040. [PubMed] [Google Scholar]
  19. Spector A. A., Burns C. P. Biological and therapeutic potential of membrane lipid modification in tumors. Cancer Res. 1987 Sep 1;47(17):4529–4537. [PubMed] [Google Scholar]
  20. Suit H. D., Russell W. O., Martin R. G. Sarcoma of soft tissue: clinical and histopathologic parameters and response to treatment. Cancer. 1975 May;35(5):1478–1483. doi: 10.1002/1097-0142(197505)35:5<1478::aid-cncr2820350537>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  21. Sze D. Y., Jardetzky O. Characterization of lipid composition in stimulated human lymphocytes by 1H-NMR. Biochim Biophys Acta. 1990 Sep 1;1054(2):198–206. doi: 10.1016/0167-4889(90)90241-5. [DOI] [PubMed] [Google Scholar]
  22. van Blitterswijk W. J. Structural basis and physiological control of membrane fluidity in normal and tumor cells. Subcell Biochem. 1988;13:393–413. doi: 10.1007/978-1-4613-9359-7_12. [DOI] [PubMed] [Google Scholar]
  23. van Blitterswijk W. J., van der Meer B. W., Hilkmann H. Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization. Biochemistry. 1987 Mar 24;26(6):1746–1756. doi: 10.1021/bi00380a038. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES