Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 15;98(2):262–270. doi: 10.1172/JCI118788

Suppression of mesangial proliferative glomerulonephritis development in rats by inhibitors of cAMP phosphodiesterase isozymes types III and IV.

Y Tsuboi 1, S J Shankland 1, J P Grande 1, H J Walker 1, R J Johnson 1, T P Dousa 1
PMCID: PMC507426  PMID: 8755633

Abstract

Excessive mesangial cell (MC) proliferation is a hallmark of many glomerulopathies. In our recent study on cultured rat MC (Matousovic, K., J.P. Grande, C.C.S. Chini, E.N. Chini, and T.P. Dousa. 1995. J. Clin. Invest. 96:401-410) we found that inhibition of isozyme cyclic-3',5'-nucleotide phosphodiesterase (PDE) type III (PDE-III) suppressed MC mitogenesis by activating cAMP-dependent protein kinase (PKA) and by decreasing activity of mitogen-activated protein kinase (MAPK). We also found that inhibition of another PDE isozyme, PDE-IV, suppresses superoxide generation in glomeruli (Chini, C.C.S., E.N. Chini, J.M. Williams, K. Matousovic, and T.P. Dousa. 1994. Kidney Int. 46:28-36). We thus explored whether administration in vivo of the selective PDE-III antagonist, lixazinone (LX), together with the specific PDE-IV antagonist, rolipram (RP), can attenuate development of mesangioproliferative glomerulonephritis (MSGN) induced in rats by anti-rat thymocyte serum (ATS). Unlike the vehicle-treated MSGN rats, rats with MSGN treated with LX and RP did not develop proteinuria and maintained normal renal function when examined 5 d after injection of ATS. In PAS-stained kidneys from PDE-antagonists-treated MSGN-rats the morphology of glomeruli showed a reduction in cellularity compared with control rats with ATS. Compared with MSGN rats receiving vehicle, the MSGN rats receiving PDE-antagonists had less glomerular cell proliferation (PCNA delta -65%), a significantly lesser macrophage infiltration (delta -36% ED-1) and a significant reduction of alpha-smooth muscle actin expression by activated MC; in contrast, immunostaining for platelet antigens and laminin were not different. The beneficial effect of PDE inhibitors was not due to a moderate decrease (approximately -20%) in systolic blood pressure (SBP); as a similar decrease in SBP due to administration of hydralazine, a drug devoid of PDE inhibitory effect, did not reduce severity of MSGN in ATS-injected rats. We conclude that antagonists of PDE-III and PDE-IV administered in submicromolar concentrations in vivo to ATS-injected rats can decrease the activation and proliferation of MC, inhibit the macrophage accumulation, and prevent proteinuria in the acute phase of MSGN. We propose that PDE isozyme inhibitors act to block (negative "crosstalk") the mitogen-stimulated intracellular signaling pathway which controls MC proliferation due to activating of the cAMP-PKA pathway. These results suggest that antagonists of PDE-111 and IV may have a suppressive effect in acute phases or relapses of glomerulopathies associated with MC proliferations.

Full Text

The Full Text of this article is available as a PDF (345.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud H. E. Growth factors and the mesangium. J Am Soc Nephrol. 1992 Apr;2(10 Suppl):S185–S189. doi: 10.1681/ASN.V210s185. [DOI] [PubMed] [Google Scholar]
  2. Alvarez R., Banerjee G. L., Bruno J. J., Jones G. L., Littschwager K., Strosberg A. M., Venuti M. C. A potent and selective inhibitor of cyclic AMP phosphodiesterase with potential cardiotonic and antithrombotic properties. Mol Pharmacol. 1986 Jun;29(6):554–560. [PubMed] [Google Scholar]
  3. Arima S., Nakayama M., Naito M., Sato T., Takahashi K. Significance of mononuclear phagocytes in IgA nephropathy. Kidney Int. 1991 Apr;39(4):684–692. doi: 10.1038/ki.1991.82. [DOI] [PubMed] [Google Scholar]
  4. Bagchus W. M., Hoedemaeker P. J., Rozing J., Bakker W. W. Glomerulonephritis induced by monoclonal anti-Thy 1.1 antibodies. A sequential histological and ultrastructural study in the rat. Lab Invest. 1986 Dec;55(6):680–687. [PubMed] [Google Scholar]
  5. Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
  6. Burgering B. M., Bos J. L. Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem Sci. 1995 Jan;20(1):18–22. doi: 10.1016/s0968-0004(00)88944-6. [DOI] [PubMed] [Google Scholar]
  7. Cano E., Mahadevan L. C. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. 1995 Mar;20(3):117–122. doi: 10.1016/s0968-0004(00)88978-1. [DOI] [PubMed] [Google Scholar]
  8. Chini C. C., Chini E. N., Williams J. M., Matousovic K., Dousa T. P. Formation of reactive oxygen metabolites in glomeruli is suppressed by inhibition of cAMP phosphodiesterase isozyme type IV. Kidney Int. 1994 Jul;46(1):28–36. doi: 10.1038/ki.1994.241. [DOI] [PubMed] [Google Scholar]
  9. Donadio J. V., Jr, Bergstralh E. J., Offord K. P., Spencer D. C., Holley K. E. A controlled trial of fish oil in IgA nephropathy. Mayo Nephrology Collaborative Group. N Engl J Med. 1994 Nov 3;331(18):1194–1199. doi: 10.1056/NEJM199411033311804. [DOI] [PubMed] [Google Scholar]
  10. Dousa T. P. Cyclic-3',5'-nucleotide phosphodiesterases in the cyclic adenosine monophosphate (cAMP)-mediated actions of vasopressin. Semin Nephrol. 1994 Jul;14(4):333–340. [PubMed] [Google Scholar]
  11. Dousa T. P., Shah S. V., Abboud H. E. Potential role of cyclic nucleotides in glomerular pathophysiology. Adv Cyclic Nucleotide Res. 1980;12:285–299. [PubMed] [Google Scholar]
  12. Emancipator S. N. IgA nephropathy: morphologic expression and pathogenesis. Am J Kidney Dis. 1994 Mar;23(3):451–462. doi: 10.1016/s0272-6386(12)81011-0. [DOI] [PubMed] [Google Scholar]
  13. Fialkow L., Chan C. K., Rotin D., Grinstein S., Downey G. P. Activation of the mitogen-activated protein kinase signaling pathway in neutrophils. Role of oxidants. J Biol Chem. 1994 Dec 9;269(49):31234–31242. [PubMed] [Google Scholar]
  14. Floege J., Eng E., Young B. A., Alpers C. E., Barrett T. B., Bowen-Pope D. F., Johnson R. J. Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J Clin Invest. 1993 Dec;92(6):2952–2962. doi: 10.1172/JCI116918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Floege J., Eng E., Young B. A., Couser W. G., Johnson R. J. Heparin suppresses mesangial cell proliferation and matrix expansion in experimental mesangioproliferative glomerulonephritis. Kidney Int. 1993 Feb;43(2):369–380. doi: 10.1038/ki.1993.55. [DOI] [PubMed] [Google Scholar]
  16. Floege J., Eng E., Young B. A., Johnson R. J. Factors involved in the regulation of mesangial cell proliferation in vitro and in vivo. Kidney Int Suppl. 1993 Jan;39:S47–S54. [PubMed] [Google Scholar]
  17. Galla J. H. IgA nephropathy. Kidney Int. 1995 Feb;47(2):377–387. doi: 10.1038/ki.1995.50. [DOI] [PubMed] [Google Scholar]
  18. Graves L. M., Bornfeldt K. E., Raines E. W., Potts B. C., Macdonald S. G., Ross R., Krebs E. G. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10300–10304. doi: 10.1073/pnas.90.21.10300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johnson R. J., Iida H., Alpers C. E., Majesky M. W., Schwartz S. M., Pritzi P., Gordon K., Gown A. M. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest. 1991 Mar;87(3):847–858. doi: 10.1172/JCI115089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson R. J., Lombardi D., Eng E., Gordon K., Alpers C. E., Pritzl P., Floege J., Young B., Pippin J., Couser W. G. Modulation of experimental mesangial proliferative nephritis by interferon-gamma. Kidney Int. 1995 Jan;47(1):62–69. doi: 10.1038/ki.1995.7. [DOI] [PubMed] [Google Scholar]
  21. Johnson R. J., Lovett D., Lehrer R. I., Couser W. G., Klebanoff S. J. Role of oxidants and proteases in glomerular injury. Kidney Int. 1994 Feb;45(2):352–359. doi: 10.1038/ki.1994.45. [DOI] [PubMed] [Google Scholar]
  22. Johnson R. J., Pritzl P., Iida H., Alpers C. E. Platelet-complement interactions in mesangial proliferative nephritis in the rat. Am J Pathol. 1991 Feb;138(2):313–321. [PMC free article] [PubMed] [Google Scholar]
  23. Johnson R. J. The glomerular response to injury: progression or resolution? Kidney Int. 1994 Jun;45(6):1769–1782. doi: 10.1038/ki.1994.230. [DOI] [PubMed] [Google Scholar]
  24. Kambayashi J., Watase M., Kawasaki T., Shiba E., Sakon M., Mori T., Isaka Y., Kimura K., Kamada T. Phosphodiesterase inhibitors as antiplatelet agents in vascular surgery. Adv Second Messenger Phosphoprotein Res. 1992;25:383–393. [PubMed] [Google Scholar]
  25. Krause W., Kühne G., Matthes H. Pharmacokinetics of the antidepressant rolipram in healthy volunteers. Xenobiotica. 1989 Jun;19(6):683–692. doi: 10.3109/00498258909042306. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Marx J. Two major signal pathways linked. Science. 1993 Nov 12;262(5136):988–990. doi: 10.1126/science.8257559. [DOI] [PubMed] [Google Scholar]
  28. Matousovic K., Grande J. P., Chini C. C., Chini E. N., Dousa T. P. Inhibitors of cyclic nucleotide phosphodiesterase isozymes type-III and type-IV suppress mitogenesis of rat mesangial cells. J Clin Invest. 1995 Jul;96(1):401–410. doi: 10.1172/JCI118049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mené P., Simonson M. S., Dunn M. J. Physiology of the mesangial cell. Physiol Rev. 1989 Oct;69(4):1347–1424. doi: 10.1152/physrev.1989.69.4.1347. [DOI] [PubMed] [Google Scholar]
  30. Rassier M. E., McIntyre S. J., Yamaki M., Takeda S., Lin J. T., Dousa T. P. Isozymes of cyclic-3',5'-nucleotide phosphodiesterases in renal epithelial LLC-PK1 cells. Kidney Int. 1992 Jan;41(1):88–99. doi: 10.1038/ki.1992.12. [DOI] [PubMed] [Google Scholar]
  31. Satriano J. A., Shuldiner M., Hora K., Xing Y., Shan Z., Schlondorff D. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G. Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. J Clin Invest. 1993 Sep;92(3):1564–1571. doi: 10.1172/JCI116737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schreck R., Baeuerle P. A. A role for oxygen radicals as second messengers. Trends Cell Biol. 1991 Aug;1(2-3):39–42. doi: 10.1016/0962-8924(91)90072-h. [DOI] [PubMed] [Google Scholar]
  33. Schwabe U., Miyake M., Ohga Y., Daly J. W. 4-(3-Cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62711): a potent inhibitor of adenosine cyclic 3',5'-monophosphate phosphodiesterases in homogenates and tissue slices from rat brain. Mol Pharmacol. 1976 Nov;12(6):900–910. [PubMed] [Google Scholar]
  34. Sedor J. R., Konieczkowski M., Huang S., Gronich J. H., Nakazato Y., Gordon G., King C. H. Cytokines, mesangial cell activation and glomerular injury. Kidney Int Suppl. 1993 Jan;39:S65–S70. [PubMed] [Google Scholar]
  35. Shah S. V. Role of reactive oxygen metabolites in experimental glomerular disease. Kidney Int. 1989 May;35(5):1093–1106. doi: 10.1038/ki.1989.96. [DOI] [PubMed] [Google Scholar]
  36. Winston B. W., Lange-Carter C. A., Gardner A. M., Johnson G. L., Riches D. W. Tumor necrosis factor alpha rapidly activates the mitogen-activated protein kinase (MAPK) cascade in a MAPK kinase kinase-dependent, c-Raf-1-independent fashion in mouse macrophages. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1614–1618. doi: 10.1073/pnas.92.5.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
  38. Yamamoto T., Wilson C. B. Quantitative and qualitative studies of antibody-induced mesangial cell damage in the rat. Kidney Int. 1987 Oct;32(4):514–525. doi: 10.1038/ki.1987.240. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES