Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 15;98(2):345–351. doi: 10.1172/JCI118798

Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase.

S Pitkanen 1, B H Robinson 1
PMCID: PMC507436  PMID: 8755643

Abstract

Mitochondria were isolated from skin fibroblast cultures derived from healthy individuals (controls) and from a group patients with complex I (NADH-CoQ reductase) deficiency of the mitochondrial respiratory chain. The complex I deficient patients included those with fatal infantile lactic acidosis (FILA), cardiomyopathy with cataracts (CC), hepatopathy with tubulopathy (HT), Leigh's disease (LD), cataracts and developmental delay (CD), and lactic acidemia in the neonatal period followed by mild symptoms (MS). Production of superoxide radicals, on addition of NADH, were measured using the luminometric probe lucigenin with isolated fibroblast mitochondrial membranes. Superoxide production rates were highest with CD and decreased in the order CD >> MS > LD > control > HT > FILA = CC. The quantity of Mn-superoxide dismutase (MnSOD), as measured by ELISA techniques, however, was highest in CC and FILA and lowest in CD. Plots of MnSOD quantity versus superoxide production showed an inverse relationship for most conditions with complex I deficiency. We hypothesize that oxygen radical production is increased when complex I activity is compromised. However, the observed superoxide production rates are modulated by the variant induction of MnSOD which decreases the rates, sometimes below those seen in control fibroblast mitochondria. In turn, we show that the variant induction of MnSOD is most likely a function of the change in the redox state of the cell experienced rather than a result of the complex I defect per se.

Full Text

The Full Text of this article is available as a PDF (199.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beyer R. E. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol. 1992 Jun;70(6):390–403. doi: 10.1139/o92-061. [DOI] [PubMed] [Google Scholar]
  2. Bhuyan D. K., Bhuyan K. C. Assessment of oxidative stress to eye in animal model for cataract. Methods Enzymol. 1994;233:630–639. doi: 10.1016/s0076-6879(94)33066-2. [DOI] [PubMed] [Google Scholar]
  3. Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DiMauro S., Nicholson J. F., Hays A. P., Eastwood A. B., Papadimitriou A., Koenigsberger R., DeVivo D. C. Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Ann Neurol. 1983 Aug;14(2):226–234. doi: 10.1002/ana.410140209. [DOI] [PubMed] [Google Scholar]
  5. Earley F. G., Patel S. D., Ragan I., Attardi G. Photolabelling of a mitochondrially encoded subunit of NADH dehydrogenase with [3H]dihydrorotenone. FEBS Lett. 1987 Jul 13;219(1):108–112. doi: 10.1016/0014-5793(87)81200-0. [DOI] [PubMed] [Google Scholar]
  6. Faulkner K., Fridovich I. Luminol and lucigenin as detectors for O2.-. Free Radic Biol Med. 1993 Oct;15(4):447–451. doi: 10.1016/0891-5849(93)90044-u. [DOI] [PubMed] [Google Scholar]
  7. Fazzone H., Wangner A., Clerch L. B. Rat lung contains a developmentally regulated manganese superoxide dismutase mRNA-binding protein. J Clin Invest. 1993 Sep;92(3):1278–1281. doi: 10.1172/JCI116700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer J. C., Ruitenbeek W., Stadhouders A. M., Trijbels J. M., Sengers R. C., Janssen A. J., Veerkamp J. H. Investigation of mitochondrial metabolism in small human skeletal muscle biopsy specimens. Improvement of preparation procedure. Clin Chim Acta. 1985 Jan 15;145(1):89–99. doi: 10.1016/0009-8981(85)90022-1. [DOI] [PubMed] [Google Scholar]
  9. Flint D. H., Tuminello J. F., Emptage M. H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem. 1993 Oct 25;268(30):22369–22376. [PubMed] [Google Scholar]
  10. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
  11. Glerum D. M., Yanamura W., Capaldi R. A., Robinson B. H. Characterization of cytochrome-c oxidase mutants in human fibroblasts. FEBS Lett. 1988 Aug 15;236(1):100–104. doi: 10.1016/0014-5793(88)80293-x. [DOI] [PubMed] [Google Scholar]
  12. Hennet T., Richter C., Peterhans E. Tumour necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells. Biochem J. 1993 Jan 15;289(Pt 2):587–592. doi: 10.1042/bj2890587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moreadith R. W., Batshaw M. L., Ohnishi T., Kerr D., Knox B., Jackson D., Hruban R., Olson J., Reynafarje B., Lehninger A. L. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest. 1984 Sep;74(3):685–697. doi: 10.1172/JCI111484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pitkanen S., Merante F., McLeod D. R., Applegarth D., Tong T., Robinson B. H. Familial cardiomyopathy with cataracts and lactic acidosis: a defect in complex I (NADH-dehydrogenase) of the mitochondria respiratory chain. Pediatr Res. 1996 Mar;39(3):513–521. doi: 10.1203/00006450-199603000-00021. [DOI] [PubMed] [Google Scholar]
  15. Robinson B. H., Glerum D. M., Chow W., Petrova-Benedict R., Lightowlers R., Capaldi R. The use of skin fibroblast cultures in the detection of respiratory chain defects in patients with lacticacidemia. Pediatr Res. 1990 Nov;28(5):549–555. doi: 10.1203/00006450-199011000-00027. [DOI] [PubMed] [Google Scholar]
  16. Robinson B. H. Lacticacidemia. Biochim Biophys Acta. 1993 Oct 20;1182(3):231–244. doi: 10.1016/0925-4439(93)90064-8. [DOI] [PubMed] [Google Scholar]
  17. Robinson B. H., McKay N., Goodyer P., Lancaster G. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacticacidemia. Am J Hum Genet. 1985 Sep;37(5):938–946. [PMC free article] [PubMed] [Google Scholar]
  18. Shull S., Heintz N. H., Periasamy M., Manohar M., Janssen Y. M., Marsh J. P., Mossman B. T. Differential regulation of antioxidant enzymes in response to oxidants. J Biol Chem. 1991 Dec 25;266(36):24398–24403. [PubMed] [Google Scholar]
  19. Takeshige K., Minakami S. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem J. 1979 Apr 15;180(1):129–135. doi: 10.1042/bj1800129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ueno H., Miyoshi H., Ebisui K., Iwamura H. Comparison of the inhibitory action of natural rotenone and its stereoisomers with various NADH-ubiquinone reductases. Eur J Biochem. 1994 Oct 1;225(1):411–417. doi: 10.1111/j.1432-1033.1994.00411.x. [DOI] [PubMed] [Google Scholar]
  21. Yagi T., Hatefi Y. Identification of the dicyclohexylcarbodiimide-binding subunit of NADH-ubiquinone oxidoreductase (Complex I). J Biol Chem. 1988 Nov 5;263(31):16150–16155. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES