Abstract
Healthy subjects ingested 2H2O and after 14, 22, and 42 h of fasting the enrichments of deuterium in the hydrogens bound to carbons 2, 5, and 6 of blood glucose and in body water were determined. The hydrogens bound to the carbons were isolated in formaldehyde which was converted to hexamethylenetetramine for assay. Enrichment of the deuterium bound to carbon 5 of glucose to that in water or to carbon 2 directly equals the fraction of glucose formed by gluconeogenesis. The contribution of gluconeogenesis to glucose production was 47 +/- 49% after 14 h, 67 +/- 41% after 22 h, and 93 +/- 2% after 42 h of fasting. Glycerol's conversion to glucose is included in estimates using the enrichment at carbon 5, but not carbon 6. Equilibrations with water of the hydrogens bound to carbon 3 of pyruvate that become those bound to carbon 6 of glucose and of the hydrogen at carbon 2 of glucose produced via glycogenolysis are estimated from the enrichments to be approximately 80% complete. Thus, rates of gluconeogenesis can be determined without corrections required in other tracer methodologies. After an overnight fast gluconeogenesis accounts for approximately 50% and after 42 h of fasting for almost all of glucose production in healthy subjects.
Full Text
The Full Text of this article is available as a PDF (187.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Björkman O., Eriksson L. S., Nyberg B., Wahren J. Gut exchange of glucose and lactate in basal state and after oral glucose ingestion in postoperative patients. Diabetes. 1990 Jun;39(6):747–751. doi: 10.2337/diab.39.6.747. [DOI] [PubMed] [Google Scholar]
- Björkman O., Felig P., Wahren J. Role of basal glucagon levels in the regulation of splanchnic glucose output and ketogenesis in insulin-deficient humans. Clin Physiol. 1984 Jun;4(3):227–241. doi: 10.1111/j.1475-097x.1984.tb00117.x. [DOI] [PubMed] [Google Scholar]
- Björkman O., Felig P., Wahren J. The contrasting responses of splanchnic and renal glucose output to gluconeogenic substrates and to hypoglucagonemia in 60-h-fasted humans. Diabetes. 1980 Aug;29(8):610–616. doi: 10.2337/diab.29.8.610. [DOI] [PubMed] [Google Scholar]
- Björkman O., Gunnarsson R., Hagström E., Felig P., Wahren J. Splanchnic and renal exchange of infused fructose in insulin-deficient type 1 diabetic patients and healthy controls. J Clin Invest. 1989 Jan;83(1):52–59. doi: 10.1172/JCI113884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bratusch-Marrain P., Björkman O., Hagenfeldt L., Waldhäusl W., Wahren J. Influence of arginine on splanchnic glucose metabolism in man. Diabetes. 1979 Feb;28(2):126–131. doi: 10.2337/diab.28.2.126. [DOI] [PubMed] [Google Scholar]
- Butler P. C., Rizza R. A. Contribution to postprandial hyperglycemia and effect on initial splanchnic glucose clearance of hepatic glucose cycling in glucose-intolerant or NIDDM patients. Diabetes. 1991 Jan;40(1):73–81. [PubMed] [Google Scholar]
- CRANE R. K., LIPMANN F. The effect of arsenate on aerobic phosphorylation. J Biol Chem. 1953 Mar;201(1):235–243. [PubMed] [Google Scholar]
- Calles-Escandón J. Insulin dissociates hepatic glucose cycling and glucagon-induced thermogenesis in man. Metabolism. 1994 Aug;43(8):1000–1005. doi: 10.1016/0026-0495(94)90180-5. [DOI] [PubMed] [Google Scholar]
- Chiasson J. L., Liljenquist J. E., Lacy W. W., Jennings A. S., Cherrington A. D. Gluconeogenesis: methodological approaches in vivo. Fed Proc. 1977 Feb;36(2):229–235. [PubMed] [Google Scholar]
- Consoli A., Kennedy F., Miles J., Gerich J. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. J Clin Invest. 1987 Nov;80(5):1303–1310. doi: 10.1172/JCI113206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DISCHE Z., BORENFREUND E. A new color reaction for the determination of aldopentose in presence of other saccharides. Biochim Biophys Acta. 1957 Mar;23(3):639–642. doi: 10.1016/0006-3002(57)90387-6. [DOI] [PubMed] [Google Scholar]
- Gay L. J., Schneiter P., Schutz Y., Di Vetta V., Jéquier E., Tappy L. A non-invasive assessment of hepatic glycogen kinetics and post-absorptive gluconeogenesis in man. Diabetologia. 1994 May;37(5):517–523. doi: 10.1007/s001250050141. [DOI] [PubMed] [Google Scholar]
- Goodwin G. W., Arteaga J. R., Taegtmeyer H. Glycogen turnover in the isolated working rat heart. J Biol Chem. 1995 Apr 21;270(16):9234–9240. doi: 10.1074/jbc.270.16.9234. [DOI] [PubMed] [Google Scholar]
- Gruetter R., Magnusson I., Rothman D. L., Avison M. J., Shulman R. G., Shulman G. I. Validation of 13C NMR measurements of liver glycogen in vivo. Magn Reson Med. 1994 Jun;31(6):583–588. doi: 10.1002/mrm.1910310602. [DOI] [PubMed] [Google Scholar]
- Guo Z. K., Lee W. N., Katz J., Bergner A. E. Quantitation of positional isomers of deuterium-labeled glucose by gas chromatography/mass spectrometry. Anal Biochem. 1992 Aug 1;204(2):273–282. doi: 10.1016/0003-2697(92)90238-3. [DOI] [PubMed] [Google Scholar]
- Kalhan S. C., Savin S. M., Adam P. A. Estimation of glucose turnover with stable tracer glucose-1-13C. J Lab Clin Med. 1977 Feb;89(2):285–294. [PubMed] [Google Scholar]
- Karlander S. G., Khan A., Wajngot A., Torring O., Vranic M., Efendić S. Glucose turnover in hyperthyroid patients with normal glucose tolerance. J Clin Endocrinol Metab. 1989 Apr;68(4):780–786. doi: 10.1210/jcem-68-4-780. [DOI] [PubMed] [Google Scholar]
- Karlander S., Roovete A., Vranić M., Efendić S. Glucose and fructose 6-phosphate cycle in humans. Am J Physiol. 1986 Nov;251(5 Pt 1):E530–E536. doi: 10.1152/ajpendo.1986.251.5.E530. [DOI] [PubMed] [Google Scholar]
- Kuwajima M., Golden S., Katz J., Unger R. H., Foster D. W., McGarry J. D. Active hepatic glycogen synthesis from gluconeogenic precursors despite high tissue levels of fructose 2,6-bisphosphate. J Biol Chem. 1986 Feb 25;261(6):2632–2637. [PubMed] [Google Scholar]
- LANDAU B. R., LEONARDS J. R., BARRY F. M. A quantitative study of glucagon-induced hepatic glycogenolysis. Am J Physiol. 1960 Aug;199:231–234. doi: 10.1152/ajplegacy.1960.199.2.231. [DOI] [PubMed] [Google Scholar]
- LJUNGDAHL L., WOOD H. G., RACKER E., COURI D. Formation of unequally labeled fructose 6-phosphate by an exchange reaction catalyzed by transaldolase. J Biol Chem. 1961 Jun;236:1622–1625. [PubMed] [Google Scholar]
- Landau B. R. Estimating gluconeogenic rates in NIDDM. Adv Exp Med Biol. 1993;334:209–220. doi: 10.1007/978-1-4615-2910-1_15. [DOI] [PubMed] [Google Scholar]
- Landau B. R., Fernandez C. A., Previs S. F., Ekberg K., Chandramouli V., Wahren J., Kalhan S. C., Brunengraber H. A limitation in the use of mass isotopomer distributions to measure gluconeogenesis in fasting humans. Am J Physiol. 1995 Jul;269(1 Pt 1):E18–E26. doi: 10.1152/ajpendo.1995.269.1.E18. [DOI] [PubMed] [Google Scholar]
- Landau B. R., Wahren J., Chandramouli V., Schumann W. C., Ekberg K., Kalhan S. C. Use of 2H2O for estimating rates of gluconeogenesis. Application to the fasted state. J Clin Invest. 1995 Jan;95(1):172–178. doi: 10.1172/JCI117635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magnusson I., Rothman D. L., Jucker B., Cline G. W., Shulman R. G., Shulman G. I. Liver glycogen turnover in fed and fasted humans. Am J Physiol. 1994 May;266(5 Pt 1):E796–E803. doi: 10.1152/ajpendo.1994.266.5.E796. [DOI] [PubMed] [Google Scholar]
- Magnusson I., Rothman D. L., Katz L. D., Shulman R. G., Shulman G. I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 1992 Oct;90(4):1323–1327. doi: 10.1172/JCI115997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magnusson I., Wennlund A., Chandramouli V., Schumann W. C., Kumaran K., Wahren J., Landau B. R. Fructose-6-phosphate cycling and the pentose cycle in hyperthyroidism. J Clin Endocrinol Metab. 1990 Feb;70(2):461–466. doi: 10.1210/jcem-70-2-461. [DOI] [PubMed] [Google Scholar]
- Miyoshi H., Shulman G. I., Peters E. J., Wolfe M. H., Elahi D., Wolfe R. R. Hormonal control of substrate cycling in humans. J Clin Invest. 1988 May;81(5):1545–1555. doi: 10.1172/JCI113487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neese R. A., Schwarz J. M., Faix D., Turner S., Letscher A., Vu D., Hellerstein M. K. Gluconeogenesis and intrahepatic triose phosphate flux in response to fasting or substrate loads. Application of the mass isotopomer distribution analysis technique with testing of assumptions and potential problems. J Biol Chem. 1995 Jun 16;270(24):14452–14466. doi: 10.1074/jbc.270.24.14452. [DOI] [PubMed] [Google Scholar]
- Nilsson L. H., Hultman E. Liver glycogen in man--the effect of total starvation or a carbohydrate-poor diet followed by carbohydrate refeeding. Scand J Clin Lab Invest. 1973 Dec;32(4):325–330. doi: 10.3109/00365517309084355. [DOI] [PubMed] [Google Scholar]
- Nurjhan N., Consoli A., Gerich J. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J Clin Invest. 1992 Jan;89(1):169–175. doi: 10.1172/JCI115558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peroni O., Large V., Beylot M. Measuring gluconeogenesis with [2-13C]glycerol and mass isotopomer distribution analysis of glucose. Am J Physiol. 1995 Sep;269(3 Pt 1):E516–E523. doi: 10.1152/ajpendo.1995.269.3.E516. [DOI] [PubMed] [Google Scholar]
- Petersen K. F., Price T., Cline G. W., Rothman D. L., Shulman G. I. Contribution of net hepatic glycogenolysis to glucose production during the early postprandial period. Am J Physiol. 1996 Jan;270(1 Pt 1):E186–E191. doi: 10.1152/ajpendo.1996.270.1.E186. [DOI] [PubMed] [Google Scholar]
- Pimenta W., Nurjhan N., Jansson P. A., Stumvoll M., Gerich J., Korytkowski M. Glycogen: its mode of formation and contribution to hepatic glucose output in postabsorptive humans. Diabetologia. 1994 Jul;37(7):697–702. doi: 10.1007/BF00417694. [DOI] [PubMed] [Google Scholar]
- ROSE I. A., O'CONNELL E. L. Intramolecular hydrogen transfer in the phosphoglucose isomerase reaction. J Biol Chem. 1961 Dec;236:3086–3092. [PubMed] [Google Scholar]
- Rognstad R., Clark G., Katz J. Glucose synthesis in tritiated water. Eur J Biochem. 1974 Sep 1;47(2):383–388. doi: 10.1111/j.1432-1033.1974.tb03703.x. [DOI] [PubMed] [Google Scholar]
- Rooney D. P., Neely R. D., Cullen C., Ennis C. N., Sheridan B., Atkinson A. B., Trimble E. R., Bell P. M. The effect of cortisol on glucose/glucose-6-phosphate cycle activity and insulin action. J Clin Endocrinol Metab. 1993 Nov;77(5):1180–1183. doi: 10.1210/jcem.77.5.8077310. [DOI] [PubMed] [Google Scholar]
- Rothman D. L., Magnusson I., Katz L. D., Shulman R. G., Shulman G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991 Oct 25;254(5031):573–576. doi: 10.1126/science.1948033. [DOI] [PubMed] [Google Scholar]
- Schumann W. C., Magnusson I., Chandramouli V., Kumaran K., Wahren J., Landau B. R. Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis. J Biol Chem. 1991 Apr 15;266(11):6985–6990. [PubMed] [Google Scholar]
- Schäffer L., Tronier B. Enzymatic determination of 1-14C-glucose in pig plasma. Diabetologia. 1989 Sep;32(9):660–662. doi: 10.1007/BF00274253. [DOI] [PubMed] [Google Scholar]
- Shulman G. I., Ladenson P. W., Wolfe M. H., Ridgway E. C., Wolfe R. R. Substrate cycling between gluconeogenesis and glycolysis in euthyroid, hypothyroid, and hyperthyroid man. J Clin Invest. 1985 Aug;76(2):757–764. doi: 10.1172/JCI112032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stetten M. R., Kehoe J. J. Synthesis of D-ribitol 5-phosphate by an inorganic pyrophosphate-ribitol phosphotransferase activity of microsomal glucose-6-phosphatase. Biochim Biophys Acta. 1971 Dec 15;250(3):501–513. doi: 10.1016/0005-2744(71)90250-6. [DOI] [PubMed] [Google Scholar]
- Stumvoll M., Chintalapudi U., Perriello G., Welle S., Gutierrez O., Gerich J. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest. 1995 Nov;96(5):2528–2533. doi: 10.1172/JCI118314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahren J., Efendić S., Luft R., Hagenfeldt L., Björkman O., Felig P. Influence of somatostatin on splanchnic glucose metabolism in postabsorptive and 60-hour fasted humans. J Clin Invest. 1977 Feb;59(2):299–307. doi: 10.1172/JCI108641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahren J., Wennlund A., Nilsson L. H., Felig P. Influence of hyperthyroidism on splanchnic exchange of glucose and gluconeogenic precursors. J Clin Invest. 1981 Apr;67(4):1056–1063. doi: 10.1172/JCI110117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wajngot A., Chandramouli V., Schumann W. C., Efendic S., Landau B. R. Quantitation of glycogen/glucose-1-P cycling in liver. Metabolism. 1991 Aug;40(8):877–881. doi: 10.1016/0026-0495(91)90019-s. [DOI] [PubMed] [Google Scholar]
- Wajngot A., Chandramouli V., Schumann W. C., Kumaran K., Efendić S., Landau B. R. Testing of the assumptions made in estimating the extent of futile cycling. Am J Physiol. 1989 May;256(5 Pt 1):E668–E675. doi: 10.1152/ajpendo.1989.256.5.E668. [DOI] [PubMed] [Google Scholar]