Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 15;98(2):405–417. doi: 10.1172/JCI118806

Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues.

W Croteau 1, J C Davey 1, V A Galton 1, D L St Germain 1
PMCID: PMC507444  PMID: 8755651

Abstract

The deiodination of thyroid hormones in extrathyroidal tissues plays an important role in modulating thyroid hormone action. The type II deiodinase (DII) converts thyroxine to the active hormone 3,5,3'-triiodothyronine, and in the rat is expressed in the brain, pituitary gland, and brown adipose tissue (BAT). Complementary DNAs (cDNAs) for the types I and III deiodinases (DI and DIII, respectively) have been isolated and shown to code for selenoproteins. However, information concerning the structure of the mammalian DII remains limited, and the pattern of its expression in human tissues is undefined. We report herein the identification and characterization of rat and human DII cDNAs. Both code for selenoproteins and exhibit limited regions of homology with the DI and DIII. In the rat pituitary and BAT, DII mRNA levels are altered more than 10-fold by changes in the thyroid hormone status of the animal. Northern analysis of RNA derived from human tissues reveals expression of DII transcripts in heart, skeletal muscle, placenta, fetal brain, and several regions of the adult brain. These studies demonstrate that: (a) the rat and human DII are selenoproteins, (b) DII expression in the rat is regulated, at least in part, at the pretranslational level in some tissues, and (c) DII is likely to be of considerable physiologic importance in thyroid hormone economy in the human fetus and adult.

Full Text

The Full Text of this article is available as a PDF (590.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abuid J., Klein A. H., Foley T. P., Jr, Larsen P. R. Total and free triiodothyronine and thyroxine in early infancy. J Clin Endocrinol Metab. 1974 Aug;39(2):263–268. doi: 10.1210/jcem-39-2-263. [DOI] [PubMed] [Google Scholar]
  2. Becker K. B., Schneider M. J., Davey J. C., Galton V. A. The type III 5-deiodinase in Rana catesbeiana tadpoles is encoded by a thyroid hormone-responsive gene. Endocrinology. 1995 Oct;136(10):4424–4431. doi: 10.1210/endo.136.10.7664662. [DOI] [PubMed] [Google Scholar]
  3. Beckett G. J., MacDougall D. A., Nicol F., Arthur R. Inhibition of type I and type II iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency. Biochem J. 1989 May 1;259(3):887–892. doi: 10.1042/bj2590887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beech S. G., Walker S. W., Beckett G. J., Arthur J. R., Nicol F., Lee D. Effect of selenium depletion on thyroidal type-I iodothyronine deiodinase activity in isolated human thyrocytes and rat thyroid and liver. Analyst. 1995 Mar;120(3):827–831. doi: 10.1039/an9952000827. [DOI] [PubMed] [Google Scholar]
  5. Beech S. G., Walker S. W., Dorrance A. M., Arthur J. R., Nicol F., Lee D., Beckett G. J. The role of thyroidal type-I iodothyronine deiodinase in tri-iodothyronine production by human and sheep thyrocytes in primary culture. J Endocrinol. 1993 Mar;136(3):361–370. doi: 10.1677/joe.0.1360361. [DOI] [PubMed] [Google Scholar]
  6. Behne D., Hilmert H., Scheid S., Gessner H., Elger W. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta. 1988 Jul 14;966(1):12–21. doi: 10.1016/0304-4165(88)90123-7. [DOI] [PubMed] [Google Scholar]
  7. Bernal J., Pekonen F. Ontogenesis of the nuclear 3,5,3'-triiodothyronine receptor in the human fetal brain. Endocrinology. 1984 Feb;114(2):677–679. doi: 10.1210/endo-114-2-677. [DOI] [PubMed] [Google Scholar]
  8. Berry M. J., Banu L., Harney J. W., Larsen P. R. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 1993 Aug;12(8):3315–3322. doi: 10.1002/j.1460-2075.1993.tb06001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berry M. J., Banu L., Larsen P. R. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature. 1991 Jan 31;349(6308):438–440. doi: 10.1038/349438a0. [DOI] [PubMed] [Google Scholar]
  10. Berry M. J. Identification of essential histidine residues in rat type I iodothyronine deiodinase. J Biol Chem. 1992 Sep 5;267(25):18055–18059. [PubMed] [Google Scholar]
  11. Berry M. J., Kieffer J. D., Larsen P. R. Evidence that cysteine, not selenocysteine, is in the catalytic site of type II iodothyronine deiodinase. Endocrinology. 1991 Jul;129(1):550–552. doi: 10.1210/endo-129-1-550. [DOI] [PubMed] [Google Scholar]
  12. Bianco A. C., Silva J. E. Nuclear 3,5,3'-triiodothyronine (T3) in brown adipose tissue: receptor occupancy and sources of T3 as determined by in vivo techniques. Endocrinology. 1987 Jan;120(1):55–62. doi: 10.1210/endo-120-1-55. [DOI] [PubMed] [Google Scholar]
  13. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  14. Bunsey M., Eichenbaum H. Conservation of hippocampal memory function in rats and humans. Nature. 1996 Jan 18;379(6562):255–257. doi: 10.1038/379255a0. [DOI] [PubMed] [Google Scholar]
  15. Calvo R., Obregón M. J., Ruiz de Oña C., Escobar del Rey F., Morreale de Escobar G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3'-triiodothyronine in the protection of the fetal brain. J Clin Invest. 1990 Sep;86(3):889–899. doi: 10.1172/JCI114790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Carvalho S. D., Kimura E. T., Bianco A. C., Silva J. E. Central role of brown adipose tissue thyroxine 5'-deiodinase on thyroid hormone-dependent thermogenic response to cold. Endocrinology. 1991 Apr;128(4):2149–2159. doi: 10.1210/endo-128-4-2149. [DOI] [PubMed] [Google Scholar]
  17. Chanoine J. P., Braverman L. E., Farwell A. P., Safran M., Alex S., Dubord S., Leonard J. L. The thyroid gland is a major source of circulating T3 in the rat. J Clin Invest. 1993 Jun;91(6):2709–2713. doi: 10.1172/JCI116510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chanoine J. P., Safran M., Farwell A. P., Tranter P., Ekenbarger D. M., Dubord S., Alex S., Arthur J. R., Beckett G. J., Braverman L. E. Selenium deficiency and type II 5'-deiodinase regulation in the euthyroid and hypothyroid rat: evidence of a direct effect of thyroxine. Endocrinology. 1992 Jul;131(1):479–484. doi: 10.1210/endo.131.1.1612029. [DOI] [PubMed] [Google Scholar]
  19. Chelly J., Concordet J. P., Kaplan J. C., Kahn A. Illegitimate transcription: transcription of any gene in any cell type. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2617–2621. doi: 10.1073/pnas.86.8.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Crantz F. R., Silva J. E., Larsen P. R. An analysis of the sources and quantity of 3,5,3'-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology. 1982 Feb;110(2):367–375. doi: 10.1210/endo-110-2-367. [DOI] [PubMed] [Google Scholar]
  21. Croteau W., Whittemore S. L., Schneider M. J., St Germain D. L. Cloning and expression of a cDNA for a mammalian type III iodothyronine deiodinase. J Biol Chem. 1995 Jul 14;270(28):16569–16575. doi: 10.1074/jbc.270.28.16569. [DOI] [PubMed] [Google Scholar]
  22. Davey J. C., Becker K. B., Schneider M. J., St Germain D. L., Galton V. A. Cloning of a cDNA for the type II iodothyronine deiodinase. J Biol Chem. 1995 Nov 10;270(45):26786–26789. doi: 10.1074/jbc.270.45.26786. [DOI] [PubMed] [Google Scholar]
  23. DePalo D., Kinlaw W. B., Zhao C., Engelberg-Kulka H., St Germain D. L. Effect of selenium deficiency on type I 5'-deiodinase. J Biol Chem. 1994 Jun 10;269(23):16223–16228. [PubMed] [Google Scholar]
  24. Escobar-Morreale H. F., Obregón M. J., Escobar del Rey F., Morreale de Escobar G. Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J Clin Invest. 1995 Dec;96(6):2828–2838. doi: 10.1172/JCI118353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Godfrey K. Statistics in practice. Comparing the means of several groups. N Engl J Med. 1985 Dec 5;313(23):1450–1456. doi: 10.1056/NEJM198512053132305. [DOI] [PubMed] [Google Scholar]
  26. Gross M., Oertel M., Köhrle J. Differential selenium-dependent expression of type I 5'-deiodinase and glutathione peroxidase in the porcine epithelial kidney cell line LLC-PK1. Biochem J. 1995 Mar 15;306(Pt 3):851–856. doi: 10.1042/bj3060851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gullo D., Sinha A. K., Bashir A., Hubank M., Ekins R. P. Differences in nuclear triiodothyronine binding in rat brain cells suggest phylogenetic specialization of neuronal functions. Endocrinology. 1987 Jun;120(6):2398–2403. doi: 10.1210/endo-120-6-2398. [DOI] [PubMed] [Google Scholar]
  28. Halperin Y., Shapiro L. E., Surks M. I. Down-regulation of type II L-thyroxine, 5'-monodeiodinase in cultured GC cells: different pathways of regulation by L-triiodothyronine and 3,3',5'-triiodo-L-thyronine. Endocrinology. 1994 Oct;135(4):1464–1469. doi: 10.1210/endo.135.4.7925108. [DOI] [PubMed] [Google Scholar]
  29. Horton R. M., Ho S. N., Pullen J. K., Hunt H. D., Cai Z., Pease L. R. Gene splicing by overlap extension. Methods Enzymol. 1993;217:270–279. doi: 10.1016/0076-6879(93)17067-f. [DOI] [PubMed] [Google Scholar]
  30. Kaplan M. M., Shaw E. A. Type II iodothyronine 5'-deiodination by human and rat placenta in vitro. J Clin Endocrinol Metab. 1984 Aug;59(2):253–257. doi: 10.1210/jcem-59-2-253. [DOI] [PubMed] [Google Scholar]
  31. Koenig R. J., Leonard J. L., Senator D., Rappaport N., Watson A. Y., Larsen P. R. Regulation of thyroxine 5'-deiodinase activity by 3,5,3'-triiodothyronine in cultured rat anterior pituitary cells. Endocrinology. 1984 Jul;115(1):324–329. doi: 10.1210/endo-115-1-324. [DOI] [PubMed] [Google Scholar]
  32. Lees J. A., Saito M., Vidal M., Valentine M., Look T., Harlow E., Dyson N., Helin K. The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol. 1993 Dec;13(12):7813–7825. doi: 10.1128/mcb.13.12.7813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Leonard J. L., Mellen S. A., Larsen P. R. Thyroxine 5'-deiodinase activity in brown adipose tissue. Endocrinology. 1983 Mar;112(3):1153–1155. doi: 10.1210/endo-112-3-1153. [DOI] [PubMed] [Google Scholar]
  34. Leonard J. L., Silva J. E., Kaplan M. M., Mellen S. A., Visser T. J., Larsen P. R. Acute posttranscriptional regulation of cerebrocortical and pituitary iodothyronine 5'-deiodinases by thyroid hormone. Endocrinology. 1984 Mar;114(3):998–1004. doi: 10.1210/endo-114-3-998. [DOI] [PubMed] [Google Scholar]
  35. LoPresti J. S., Eigen A., Kaptein E., Anderson K. P., Spencer C. A., Nicoloff J. T. Alterations in 3,3'5'-triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man. J Clin Invest. 1989 Nov;84(5):1650–1656. doi: 10.1172/JCI114343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Maia A. L., Berry M. J., Sabbag R., Harney J. W., Larsen P. R. Structural and functional differences in the dio1 gene in mice with inherited type 1 deiodinase deficiency. Mol Endocrinol. 1995 Aug;9(8):969–980. doi: 10.1210/mend.9.8.7476994. [DOI] [PubMed] [Google Scholar]
  37. Mandel S. J., Berry M. J., Kieffer J. D., Harney J. W., Warne R. L., Larsen P. R. Cloning and in vitro expression of the human selenoprotein, type I iodothyronine deiodinase. J Clin Endocrinol Metab. 1992 Oct;75(4):1133–1139. doi: 10.1210/jcem.75.4.1400883. [DOI] [PubMed] [Google Scholar]
  38. McCann U. D., Shaw E. A., Kaplan M. M. Iodothyronine deiodination reaction types in several rat tissues: effects of age, thyroid status, and glucocorticoid treatment. Endocrinology. 1984 May;114(5):1513–1521. doi: 10.1210/endo-114-5-1513. [DOI] [PubMed] [Google Scholar]
  39. Meinhold H., Campos-Barros A., Walzog B., Köhler R., Müller F., Behne D. Effects of selenium and iodine deficiency on type I, type II and type III iodothyronine deiodinases and circulating thyroid hormones in the rat. Exp Clin Endocrinol. 1993;101(2):87–93. doi: 10.1055/s-0029-1211212. [DOI] [PubMed] [Google Scholar]
  40. Mellström B., Naranjo J. R., Santos A., Gonzalez A. M., Bernal J. Independent expression of the alpha and beta c-erbA genes in developing rat brain. Mol Endocrinol. 1991 Sep;5(9):1339–1350. doi: 10.1210/mend-5-9-1339. [DOI] [PubMed] [Google Scholar]
  41. Moreno M., Berry M. J., Horst C., Thoma R., Goglia F., Harney J. W., Larsen P. R., Visser T. J. Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Lett. 1994 May 16;344(2-3):143–146. doi: 10.1016/0014-5793(94)00365-3. [DOI] [PubMed] [Google Scholar]
  42. Mori Y., Nishikawa M., Toyoda N., Yonemoto T., Matsubara H., Inada M. Iodothyronine 5'-deiodinase activity in cultured rat myocardial cells: characteristics and effects of triiodothyronine and angiotensin II. Endocrinology. 1991 Jun;128(6):3105–3112. doi: 10.1210/endo-128-6-3105. [DOI] [PubMed] [Google Scholar]
  43. Pasquini J. M., Adamo A. M. Thyroid hormones and the central nervous system. Dev Neurosci. 1994;16(1-2):1–8. doi: 10.1159/000112080. [DOI] [PubMed] [Google Scholar]
  44. Porterfield S. P., Hendrich C. E. The role of thyroid hormones in prenatal and neonatal neurological development--current perspectives. Endocr Rev. 1993 Feb;14(1):94–106. doi: 10.1210/edrv-14-1-94. [DOI] [PubMed] [Google Scholar]
  45. Safran M., Farwell A. P., Leonard J. L. Evidence that type II 5'-deiodinase is not a selenoprotein. J Biol Chem. 1991 Jul 25;266(21):13477–13480. [PubMed] [Google Scholar]
  46. Safran M., Leonard J. L. Comparison of the physicochemical properties of type I and type II iodothyronine 5'-deiodinase. J Biol Chem. 1991 Feb 15;266(5):3233–3238. [PubMed] [Google Scholar]
  47. Salvatore D., Low S. C., Berry M., Maia A. L., Harney J. W., Croteau W., St Germain D. L., Larsen P. R. Type 3 lodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme. J Clin Invest. 1995 Nov;96(5):2421–2430. doi: 10.1172/JCI118299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sharifi J., St Germain D. L. The cDNA for the type I iodothyronine 5'-deiodinase encodes an enzyme manifesting both high Km and low Km activity. Evidence that rat liver and kidney contain a single enzyme which converts thyroxine to 3,5,3'-triiodothyronine. J Biol Chem. 1992 Jun 25;267(18):12539–12544. [PubMed] [Google Scholar]
  49. Silva J. E., Gordon M. B., Crantz F. R., Leonard J. L., Larsen P. R. Qualitative and quantitative differences in the pathways of extrathyroidal triiodothyronine generation between euthyroid and hypothyroid rats. J Clin Invest. 1984 Apr;73(4):898–907. doi: 10.1172/JCI111313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Silva J. E., Larsen P. R. Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature. 1983 Oct 20;305(5936):712–713. doi: 10.1038/305712a0. [DOI] [PubMed] [Google Scholar]
  51. Silva J. E., Larsen P. R. Interrelationships among thyroxine, growth hormone, and the sympathetic nervous system in the regulation of 5'-iodothyronine deiodinase in rat brown adipose tissue. J Clin Invest. 1986 Apr;77(4):1214–1223. doi: 10.1172/JCI112424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Silva J. E., Leonard J. L. Regulation of rat cerebrocortical and adenohypophyseal type II 5'-deiodinase by thyroxine, triiodothyronine, and reverse triiodothyronine. Endocrinology. 1985 Apr;116(4):1627–1635. doi: 10.1210/endo-116-4-1627. [DOI] [PubMed] [Google Scholar]
  53. Silva J. E., Matthews P. S. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism. J Clin Invest. 1984 Sep;74(3):1035–1049. doi: 10.1172/JCI111471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Silva J. E., Matthews P. Thyroid hormone metabolism and the source of plasma triiodothyronine in 2-week-old rats: effects of thyroid status. Endocrinology. 1984 Jun;114(6):2394–2405. doi: 10.1210/endo-114-6-2394. [DOI] [PubMed] [Google Scholar]
  55. Sinha A. K., Pickard M. R., Kim K. D., Ahmed M. T., al Yatama F., Evans I. M., Elkins R. P. Perturbation of thyroid hormone homeostasis in the adult and brain function. Acta Med Austriaca. 1994;21(2):35–43. [PubMed] [Google Scholar]
  56. St Germain D. L., Croteau W. Expression of phenolic and tyrosyl ring iodothyronine deiodinases in Xenopus laevis oocytes is dependent on the tissue source of injected poly(A)+ RNA. Mol Endocrinol. 1989 Dec;3(12):2049–2053. doi: 10.1210/mend-3-12-2049. [DOI] [PubMed] [Google Scholar]
  57. St Germain D. L., Dittrich W., Morganelli C. M., Cryns V. Molecular cloning by hybrid arrest of translation in Xenopus laevis oocytes. Identification of a cDNA encoding the type I iodothyronine 5'-deiodinase from rat liver. J Biol Chem. 1990 Nov 25;265(33):20087–20090. [PubMed] [Google Scholar]
  58. St Germain D. L. Metabolic effect of 3,3',5'-triiodothyronine in cultured growth hormone-producing rat pituitary tumor cells. Evidence for a unique mechanism of thyroid hormone action. J Clin Invest. 1985 Aug;76(2):890–893. doi: 10.1172/JCI112049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. St Germain D. L., Morganelli C. M. Expression of type I iodothyronine 5'-deiodinase in Xenopus laevis oocytes. J Biol Chem. 1989 Feb 25;264(6):3054–3056. [PubMed] [Google Scholar]
  60. St Germain D. L., Schwartzman R. A., Croteau W., Kanamori A., Wang Z., Brown D. D., Galton V. A. A thyroid hormone-regulated gene in Xenopus laevis encodes a type III iodothyronine 5-deiodinase. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7767–7771. doi: 10.1073/pnas.91.16.7767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. St Germain D. L., Schwartzman R. A., Croteau W., Kanamori A., Wang Z., Brown D. D., Galton V. A. A thyroid hormone-regulated gene in Xenopus laevis encodes a type III iodothyronine 5-deiodinase. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11282–11282. doi: 10.1073/pnas.91.23.11282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Surks M. I., DeFesi C. R. Determination of the cell number of each cell type in the anterior pituitary of euthyroid and hypothyroid rats. Endocrinology. 1977 Sep;101(3):946–958. doi: 10.1210/endo-101-3-946. [DOI] [PubMed] [Google Scholar]
  63. Toyoda N., Berry M. J., Harney J. W., Larsen P. R. Topological analysis of the integral membrane protein, type 1 iodothyronine deiodinase (D1). J Biol Chem. 1995 May 19;270(20):12310–12318. doi: 10.1074/jbc.270.20.12310. [DOI] [PubMed] [Google Scholar]
  64. Toyoda N., Harney J. W., Berry M. J., Larsen P. R. Identification of critical amino acids for 3,5,3'-triiodothyronine deiodination by human type 1 deiodinase based on comparative functional-structural analyses of the human, dog, and rat enzymes. J Biol Chem. 1994 Aug 12;269(32):20329–20334. [PubMed] [Google Scholar]
  65. Tsukahara F., Nomoto T., Maeda M. Properties of 5'-deiodinase of 3,3',5'-triiodothyronine in rat skeletal muscle. Acta Endocrinol (Copenh) 1989 Jan;120(1):69–74. doi: 10.1530/acta.0.1200069. [DOI] [PubMed] [Google Scholar]
  66. van Doorn J., Roelfsema F., van der Heide D. Concentrations of thyroxine and 3,5,3'-triiodothyronine at 34 different sites in euthyroid rats as determined by an isotopic equilibrium technique. Endocrinology. 1985 Sep;117(3):1201–1208. doi: 10.1210/endo-117-3-1201. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES