Abstract
The present report details the role of Ca2+ in the early events of ACTH action in human adrenal glomerulosa cells. Threshold stimulations of both aldosterone and cAMP production were obtained with a concentration of 10 pM ACTH, an ED50 of 0.1 nM, and maximal aldosterone stimulation (5.5-fold increase over control) at 10 nM ACTH. ACTH also induced a sustained increase of intracellular calcium ([Ca2+]i) with maximal stimulation of 1.6 +/- 0.1-fold over control values. This increase does not involve mobilization of calcium from intracellular pools since no response was observed in Ca2+-free medium or in the presence of nifedipine, suggesting the involvement of Ca2+ influx by L-type Ca2+ channels. This was confirmed by patch clamp studies that demonstrated that ACTH stimulates L-type Ca2+ channels. Moreover, the Ca2+ ion is not required for ACTH binding to its receptor, but is essential for sustained cAMP production and aldosterone secretion after ACTH stimulation. These results indicate that, in human adrenal glomerulosa cells, a positive feedback loop between adenylyl cyclase-protein kinase A-Ca2+ channels ensures a slow but sustained [Ca2+]i increase that is responsible for sustained cAMP production and aldosterone secretion.
Full Text
The Full Text of this article is available as a PDF (360.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguilera G., Catt K. J. Participation of voltage-dependent calcium channels in the regulation of adrenal glomerulosa function by angiotensin II and potassium. Endocrinology. 1986 Jan;118(1):112–118. doi: 10.1210/endo-118-1-112. [DOI] [PubMed] [Google Scholar]
- Bacskai B. J., Friedman P. A. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature. 1990 Sep 27;347(6291):388–391. doi: 10.1038/347388a0. [DOI] [PubMed] [Google Scholar]
- Bird I. M., Mathis J. M., Mason J. I., Rainey W. E. Ca(2+)-regulated expression of steroid hydroxylases in H295R human adrenocortical cells. Endocrinology. 1995 Dec;136(12):5677–5684. doi: 10.1210/endo.136.12.7588323. [DOI] [PubMed] [Google Scholar]
- Bird I. M., Walker S. W., Williams B. C. Agonist-stimulated turnover of the phosphoinositides and the regulation of adrenocortical steroidogenesis. J Mol Endocrinol. 1990 Dec;5(3):191–209. doi: 10.1677/jme.0.0050191. [DOI] [PubMed] [Google Scholar]
- Cheitlin R., Buckley D. I., Ramachandran J. The role of extracellular calcium in corticotropin-stimulated steroidogenesis. J Biol Chem. 1985 May 10;260(9):5323–5327. [PubMed] [Google Scholar]
- Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
- Cooper D. M., Mons N., Karpen J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. doi: 10.1038/374421a0. [DOI] [PubMed] [Google Scholar]
- Durroux T., Gallo-Payet N., Payet M. D. Effects of adrenocorticotropin on action potential and calcium currents in cultured rat and bovine glomerulosa cells. Endocrinology. 1991 Oct;129(4):2139–2147. doi: 10.1210/endo-129-4-2139. [DOI] [PubMed] [Google Scholar]
- Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
- Farese R. V., Rosic N., Babischkin J., Farese M. G., Foster R., Davis J. S. Dual activation of the inositol-triphosphate-calcium and cyclic nucleotide intracellular signaling systems by adrenocorticotropin in rat adrenal cells. Biochem Biophys Res Commun. 1986 Mar 28;135(3):742–748. doi: 10.1016/0006-291x(86)90991-5. [DOI] [PubMed] [Google Scholar]
- Flores J. A., Leong D. A., Veldhuis J. D. Is the calcium signal induced by follicle-stimulating hormone in swine granulosa cells mediated by adenosine cyclic 3',5'-monophosphate-dependent protein kinase? Endocrinology. 1992 Apr;130(4):1862–1866. doi: 10.1210/endo.130.4.1547716. [DOI] [PubMed] [Google Scholar]
- Gallo-Payet N., Payet M. D. Excitation-secretion coupling: involvement of potassium channels in ACTH-stimulated rat adrenocortical cells. J Endocrinol. 1989 Mar;120(3):409–421. doi: 10.1677/joe.0.1200409. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Guillon G., Trueba M., Joubert D., Grazzini E., Chouinard L., Côté M., Payet M. D., Manzoni O., Barberis C., Robert M. Vasopressin stimulates steroid secretion in human adrenal glands: comparison with angiotensin-II effect. Endocrinology. 1995 Mar;136(3):1285–1295. doi: 10.1210/endo.136.3.7867583. [DOI] [PubMed] [Google Scholar]
- Haksar A., Péron F. G. The role of calcium in the steroidogenic response of rat adrenal cells to adrenocorticotropic hormone. Biochim Biophys Acta. 1973 Jul 28;313(2):363–371. doi: 10.1016/0304-4165(73)90036-6. [DOI] [PubMed] [Google Scholar]
- Hanukoglu I., Feuchtwanger R., Hanukoglu A. Mechanism of corticotropin and cAMP induction of mitochondrial cytochrome P450 system enzymes in adrenal cortex cells. J Biol Chem. 1990 Nov 25;265(33):20602–20608. doi: 10.1016/S0021-9258(17)30545-8. [DOI] [PubMed] [Google Scholar]
- Kojima I., Kojima K., Rasmussen H. Role of calcium and cAMP in the action of adrenocorticotropin on aldosterone secretion. J Biol Chem. 1985 Apr 10;260(7):4248–4256. [PubMed] [Google Scholar]
- Laird S. M., Hinson J. P., Vinson G. P., Mallick N., Kapas S., Teja R. Control of steroidogenesis by the calcium messenger system in human adrenocortical cells. J Mol Endocrinol. 1991 Feb;6(1):45–51. doi: 10.1677/jme.0.0060045. [DOI] [PubMed] [Google Scholar]
- Lefebvre H., Contesse V., Delarue C., Soubrane C., Legrand A., Kuhn J. M., Wolf L. M., Vaudry H. Effect of the serotonin-4 receptor agonist zacopride on aldosterone secretion from the human adrenal cortex: in vivo and in vitro studies. J Clin Endocrinol Metab. 1993 Dec;77(6):1662–1666. doi: 10.1210/jcem.77.6.8263156. [DOI] [PubMed] [Google Scholar]
- Lefkowitz R. J., Roth J., Pastan I. Effects of calcium on ACTH stimulation of the adrenal: separation of hormone binding from adenyl cyclase activation. Nature. 1970 Nov 28;228(5274):864–866. doi: 10.1038/228864a0. [DOI] [PubMed] [Google Scholar]
- Mahaffee D. D., Ontjes D. A. The role of calcium in the control of adrenal adenylate cyclase. Enhancement of enzyme activation by guanyl-5'-yl imidodiphosphate. J Biol Chem. 1980 Feb 25;255(4):1565–1571. [PubMed] [Google Scholar]
- Manzoni O. J., Poulat F., Do E., Sahuquet A., Sassetti I., Bockaert J., Sladeczek F. A. Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Qp) in striatal neurons. Eur J Pharmacol. 1991 Jul 12;207(3):231–241. doi: 10.1016/0922-4106(91)90035-g. [DOI] [PubMed] [Google Scholar]
- Natarajan R., Stern N., Hsueh W., Do Y., Nadler J. Role of the lipoxygenase pathway in angiotensin II-mediated aldosterone biosynthesis in human adrenal glomerulosa cells. J Clin Endocrinol Metab. 1988 Sep;67(3):584–591. doi: 10.1210/jcem-67-3-584. [DOI] [PubMed] [Google Scholar]
- Payet M. D., Benabderrazik M., Gallo-Payet N. Excitation-secretion coupling: ionic currents in glomerulosa cells: effects of adrenocorticotropin and K+ channel blockers. Endocrinology. 1987 Sep;121(3):875–882. doi: 10.1210/endo-121-3-875. [DOI] [PubMed] [Google Scholar]
- Payet M. D., Durroux T., Bilodeau L., Guillon G., Gallo-Payet N. Characterization of K+ and Ca2+ ionic currents in glomerulosa cells from human adrenal glands. Endocrinology. 1994 Jun;134(6):2589–2598. doi: 10.1210/endo.134.6.7515004. [DOI] [PubMed] [Google Scholar]
- Perraudin V., Delarue C., Lefebvre H., Contesse V., Kuhn J. M., Vaudry H. Vasopressin stimulates cortisol secretion from human adrenocortical tissue through activation of V1 receptors. J Clin Endocrinol Metab. 1993 Jun;76(6):1522–1528. doi: 10.1210/jcem.76.6.7684742. [DOI] [PubMed] [Google Scholar]
- Pham-Huu-Trung M. T., Bogyo A., Leneuve P., Girard F. Compared effects of ACTH, angiotensin II and POMC peptides on isolated human adrenal cells. J Steroid Biochem. 1986 Jan;24(1):345–348. doi: 10.1016/0022-4731(86)90078-6. [DOI] [PubMed] [Google Scholar]
- Quinn S. J., Williams G. H. Regulation of aldosterone secretion. Annu Rev Physiol. 1988;50:409–426. doi: 10.1146/annurev.ph.50.030188.002205. [DOI] [PubMed] [Google Scholar]
- Rossi G., Albertin G., Belloni A., Zanin L., Biasolo M. A., Prayer-Galetti T., Bader M., Nussdorfer G. G., Palù G., Pessina A. C. Gene expression, localization, and characterization of endothelin A and B receptors in the human adrenal cortex. J Clin Invest. 1994 Sep;94(3):1226–1234. doi: 10.1172/JCI117440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Shima S., Kawashima Y., Hirai M. Effects of ACTH and calcium on cyclic AMP production and steroid output by the zona glomerulosa of the adrenal cortex. Endocrinol Jpn. 1979 Apr;26(2):219–225. doi: 10.1507/endocrj1954.26.219. [DOI] [PubMed] [Google Scholar]
- Tang W. J., Gilman A. G. Adenylyl cyclases. Cell. 1992 Sep 18;70(6):869–872. doi: 10.1016/0092-8674(92)90236-6. [DOI] [PubMed] [Google Scholar]
- Tremblay E., Payet M. D., Gallo-Payet N. Effects of ACTH and angiotensin II on cytosolic calcium in cultured adrenal glomerulosa cells. Role of cAMP production in the ACTH effect. Cell Calcium. 1991 Nov;12(10):655–673. doi: 10.1016/0143-4160(91)90036-e. [DOI] [PubMed] [Google Scholar]
- Yanagibashi K. Calcium ion as "second messenger" in corticoidogenic action of ACTH. Endocrinol Jpn. 1979 Apr;26(2):227–232. doi: 10.1507/endocrj1954.26.227. [DOI] [PubMed] [Google Scholar]
- Yanagibashi K., Kawamura M., Hall P. F. Voltage-dependent Ca2+ channels are involved in regulation of steroid synthesis by bovine but not rat fasciculata cells. Endocrinology. 1990 Jul;127(1):311–318. doi: 10.1210/endo-127-1-311. [DOI] [PubMed] [Google Scholar]