Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 15;98(2):467–473. doi: 10.1172/JCI118813

Regulation of human heart contractility by essential myosin light chain isoforms.

M Morano 1, U Zacharzowski 1, M Maier 1, P E Lange 1, V Alexi-Meskishvili 1, H Haase 1, I Morano 1
PMCID: PMC507451  PMID: 8755658

Abstract

Most of the patients with congenital heart diseases express the atrial myosin light chain 1 (ALC-1) in the right ventricle. We investigated the functional consequences of ALC-1 expression on the myosin cycling kinetics in the intact sarcomeric structure using multicellular demembranated fibers ("skinned fibers") from the right ventricular infundibulum of patients with Tetralogy of Fallot (TOF), double outlet right ventricle (DORV), and infundibular pulmonary stenosis (IPS), Force-velocity relation was analyzed by the constant-load technique at maximal Ca2+ activation (pCa 4.5). Half-time of tension development (t1/2) was investigated by monitoring contraction initiation upon photolytic release of ATP from caged-ATP in rigor. The patients investigated here expressed between 0 and 27% ALC-1. There was a statistically significant correlation between ALC-l and maximal shortening velocity (Vmax) which rose 1.87-fold from 1.2 muscle length per second (ML/s) to 2.25 ML/s in a normal (0% ALC-1) and diseased (19.9% ALC-1) ventricle. Half-time of tension development decreased 1.85-fold with increasing ALC-1 expression (t1/2) was 0.252 s and 0.136 s at 2 and 18.4% ALC-1, respectively). We conclude that the expression of ALC-1 in the human heart modulates cross-bridge cycling kinetics accelerating shortening velocity and isometric tension production.

Full Text

The Full Text of this article is available as a PDF (184.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auckland L. M., Lambert S. J., Cummins P. Cardiac myosin light and heavy chain isotypes in tetralogy of Fallot. Cardiovasc Res. 1986 Nov;20(11):828–836. doi: 10.1093/cvr/20.11.828. [DOI] [PubMed] [Google Scholar]
  2. Barton P. J., Buckingham M. E. The myosin alkali light chain proteins and their genes. Biochem J. 1985 Oct 15;231(2):249–261. doi: 10.1042/bj2310249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bottinelli R., Betto R., Schiaffino S., Reggiani C. Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol. 1994 Jul 15;478(Pt 2):341–349. doi: 10.1113/jphysiol.1994.sp020254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner B. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci U S A. 1988 May;85(9):3265–3269. doi: 10.1073/pnas.85.9.3265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Catala F., Wanner R., Barton P., Cohen A., Wright W., Buckingham M. A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain 1A gene. Mol Cell Biol. 1995 Aug;15(8):4585–4596. doi: 10.1128/mcb.15.8.4585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cummins P., Lambert S. J. Myosin transitions in the bovine and human heart. A developmental and anatomical study of heavy and light chain subunits in the atrium and ventricle. Circ Res. 1986 Jun;58(6):846–858. doi: 10.1161/01.res.58.6.846. [DOI] [PubMed] [Google Scholar]
  7. Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol. 1992;451:247–278. doi: 10.1113/jphysiol.1992.sp019163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Delcayre C., Swynghedauw B. A comparative study of heart myosin ATPase and light subunits from different species. Pflugers Arch. 1975 Mar 22;355(1):39–47. doi: 10.1007/BF00584798. [DOI] [PubMed] [Google Scholar]
  9. Eddinger T. J., Moss R. L. Mechanical properties of skinned single fibers of identified types from rat diaphragm. Am J Physiol. 1987 Aug;253(2 Pt 1):C210–C218. doi: 10.1152/ajpcell.1987.253.2.C210. [DOI] [PubMed] [Google Scholar]
  10. Eisenberg E., Hill T. L. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006. doi: 10.1126/science.3156404. [DOI] [PubMed] [Google Scholar]
  11. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  12. Frank G., Weeds A. G. The amino-acid sequence of the alkali light chains of rabbit skeletal-muscle myosin. Eur J Biochem. 1974 May 15;44(2):317–334. doi: 10.1111/j.1432-1033.1974.tb03489.x. [DOI] [PubMed] [Google Scholar]
  13. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  14. Kawai M., Saeki Y., Zhao Y. Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret. Circ Res. 1993 Jul;73(1):35–50. doi: 10.1161/01.res.73.1.35. [DOI] [PubMed] [Google Scholar]
  15. Kurabayashi M., Komuro I., Tsuchimochi H., Takaku F., Yazaki Y. Molecular cloning and characterization of human atrial and ventricular myosin alkali light chain cDNA clones. J Biol Chem. 1988 Sep 25;263(27):13930–13936. [PubMed] [Google Scholar]
  16. Leinwand L. A., Saez L., McNally E., Nadal-Ginard B. Isolation and characterization of human myosin heavy chain genes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3716–3720. doi: 10.1073/pnas.80.12.3716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lowey S., Risby D. Light chains from fast and slow muscle myosins. Nature. 1971 Nov 12;234(5324):81–85. doi: 10.1038/234081a0. [DOI] [PubMed] [Google Scholar]
  18. Mahdavi V., Chambers A. P., Nadal-Ginard B. Cardiac alpha- and beta-myosin heavy chain genes are organized in tandem. Proc Natl Acad Sci U S A. 1984 May;81(9):2626–2630. doi: 10.1073/pnas.81.9.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martin H., Barsotti R. J. Activation of skinned trabeculae of the guinea pig induced by laser photolysis of caged ATP. Biophys J. 1994 Nov;67(5):1933–1941. doi: 10.1016/S0006-3495(94)80676-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCray J. A., Herbette L., Kihara T., Trentham D. R. A new approach to time-resolved studies of ATP-requiring biological systems; laser flash photolysis of caged ATP. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7237–7241. doi: 10.1073/pnas.77.12.7237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morano I., Arndt H., Gärtner C., Rüegg J. C. Skinned fibers of human atrium and ventricle: myosin isoenzymes and contractility. Circ Res. 1988 Mar;62(3):632–639. doi: 10.1161/01.res.62.3.632. [DOI] [PubMed] [Google Scholar]
  22. Morano I., Bächle-Stolz C., Katus A., Rüegg J. C. Increased calcium sensitivity of chemically skinned human atria by myosin light chain kinase. Basic Res Cardiol. 1988 Jul-Aug;83(4):350–359. doi: 10.1007/BF02005820. [DOI] [PubMed] [Google Scholar]
  23. Morano I., Hofmann F., Zimmer M., Rüegg J. C. The influence of P-light chain phosphorylation by myosin light chain kinase on the calcium sensitivity of chemically skinned heart fibres. FEBS Lett. 1985 Sep 23;189(2):221–224. doi: 10.1016/0014-5793(85)81027-9. [DOI] [PubMed] [Google Scholar]
  24. Morano I., Osterman A., Arner A. Rate of active tension development from rigor in skinned atrial and ventricular cardiac fibres from swine following photolytic release of ATP from caged ATP. Acta Physiol Scand. 1995 Jul;154(3):343–353. doi: 10.1111/j.1748-1716.1995.tb09918.x. [DOI] [PubMed] [Google Scholar]
  25. Morano I., Ritter O., Bonz A., Timek T., Vahl C. F., Michel G. Myosin light chain-actin interaction regulates cardiac contractility. Circ Res. 1995 May;76(5):720–725. doi: 10.1161/01.res.76.5.720. [DOI] [PubMed] [Google Scholar]
  26. Morano I., Wankerl M., Böhm M., Erdmann E., Rüegg J. C. Myosin P-light chain isoenzymes in the human heart: evidence for diphosphorylation of the atrial P-LC form. Basic Res Cardiol. 1989 May-Jun;84(3):298–305. doi: 10.1007/BF01907977. [DOI] [PubMed] [Google Scholar]
  27. Periasamy M., Strehler E. E., Garfinkel L. I., Gubits R. M., Ruiz-Opazo N., Nadal-Ginard B. Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem. 1984 Nov 10;259(21):13595–13604. [PubMed] [Google Scholar]
  28. Price K. M., Littler W. A., Cummins P. Human atrial and ventricular myosin light-chains subunits in the adult and during development. Biochem J. 1980 Nov 1;191(2):571–580. doi: 10.1042/bj1910571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  30. Saez L. J., Gianola K. M., McNally E. M., Feghali R., Eddy R., Shows T. B., Leinwand L. A. Human cardiac myosin heavy chain genes and their linkage in the genome. Nucleic Acids Res. 1987 Jul 10;15(13):5443–5459. doi: 10.1093/nar/15.13.5443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schaub M. C., Tuchschmid C. R., Srihari T., Hirzel H. O. Myosin isoenzymes in human hypertrophic hearts. Shift in atrial myosin heavy chains and in ventricular myosin light chains. Eur Heart J. 1984 Dec;5 (Suppl F):85–93. doi: 10.1093/eurheartj/5.suppl_f.85. [DOI] [PubMed] [Google Scholar]
  32. Siemankowski R. F., Wiseman M. O., White H. D. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci U S A. 1985 Feb;82(3):658–662. doi: 10.1073/pnas.82.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sutoh K. Identification of myosin-binding sites on the actin sequence. Biochemistry. 1982 Jul 20;21(15):3654–3661. doi: 10.1021/bi00258a020. [DOI] [PubMed] [Google Scholar]
  34. Sweeney H. L., Kushmerick M. J., Mabuchi K., Sréter F. A., Gergely J. Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers. J Biol Chem. 1988 Jun 25;263(18):9034–9039. [PubMed] [Google Scholar]
  35. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev. 1986 Jul;66(3):710–771. doi: 10.1152/physrev.1986.66.3.710. [DOI] [PubMed] [Google Scholar]
  36. Sütsch G., Brunner U. T., von Schulthess C., Hirzel H. O., Hess O. M., Turina M., Krayenbuehl H. P., Schaub M. C. Hemodynamic performance and myosin light chain-1 expression of the hypertrophied left ventricle in aortic valve disease before and after valve replacement. Circ Res. 1992 May;70(5):1035–1043. doi: 10.1161/01.res.70.5.1035. [DOI] [PubMed] [Google Scholar]
  37. Trayer I. P., Trayer H. R., Levine B. A. Evidence that the N-terminal region of A1-light chain of myosin interacts directly with the C-terminal region of actin. A proton magnetic resonance study. Eur J Biochem. 1987 Apr 1;164(1):259–266. doi: 10.1111/j.1432-1033.1987.tb11019.x. [DOI] [PubMed] [Google Scholar]
  38. Weeds A. G., Pope B. Chemical studies on light chains from cardiac and skeletal muscle myosins. Nature. 1971 Nov 12;234(5324):85–88. doi: 10.1038/234085a0. [DOI] [PubMed] [Google Scholar]
  39. Zimmermann K., Kautz S., Hajdu G., Winter C., Whalen R. G., Starzinski-Powitz A. Heterogenic mRNAs with an identical protein-coding region of the human embryonic myosin alkali light chain in skeletal muscle cells. J Mol Biol. 1990 Feb 5;211(3):505–513. doi: 10.1016/0022-2836(90)90261-J. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES