Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jul 15;98(2):584–596. doi: 10.1172/JCI118826

Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle.

J Hansen 1, G D Thomas 1, S A Harris 1, W J Parsons 1, R G Victor 1
PMCID: PMC507464  PMID: 8755671

Abstract

Metabolic products of skeletal muscle contraction activate metaboreceptor muscle afferents that reflexively increase sympathetic nerve activity (SNA) targeted to both resting and exercising skeletal muscle. To determine effects of the increased sympathetic vasoconstrictor drive on muscle oxygenation, we measured changes in tissue oxygen stores and mitochondrial cytochrome a,a3 redox state in rhythmically contracting human forearm muscles with near infrared spectroscopy while simultaneously measuring muscle SNA with microelectrodes. The major new finding is that the ability of reflex-sympathetic activation to decrease muscle oxygenation is abolished when the muscle is exercised at an intensity > 10% of maximal voluntary contraction (MVC). During high intensity handgrip, (45% MVC), contraction-induced decreases in muscle oxygenation remained stable despite progressive metaboreceptor-mediated reflex increases in SNA. During mild to moderate handgrips (20-33% MVC) that do not evoke reflex-sympathetic activation, experimentally induced increases in muscle SNA had no effect on oxygenation in exercising muscles but produced robust decreases in oxygenation in resting muscles. The latter decreases were evident even during maximal metabolic vasodilation accompanying reactive hyperemia. We conclude that in humans sympathetic neural control of skeletal muscle oxygenation is sensitive to modulation by metabolic events in the contracting muscles. These events are different from those involved in either metaboreceptor muscle afferent activation or reactive hyperemia.

Full Text

The Full Text of this article is available as a PDF (252.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. M., Faber J. E. Differential sensitivity of arteriolar alpha 1- and alpha 2-adrenoceptor constriction to metabolic inhibition during rat skeletal muscle contraction. Circ Res. 1991 Jul;69(1):174–184. doi: 10.1161/01.res.69.1.174. [DOI] [PubMed] [Google Scholar]
  2. Burnstock G. Local mechanisms of blood flow control by perivascular nerves and endothelium. J Hypertens Suppl. 1990 Dec;8(7):S95–106. [PubMed] [Google Scholar]
  3. Chance B., Bank W. Genetic disease of mitochondrial function evaluated by NMR and NIR spectroscopy of skeletal tissue. Biochim Biophys Acta. 1995 May 24;1271(1):7–14. doi: 10.1016/0925-4439(95)00003-m. [DOI] [PubMed] [Google Scholar]
  4. Costa F., Biaggioni I. Role of adenosine in the sympathetic activation produced by isometric exercise in humans. J Clin Invest. 1994 Apr;93(4):1654–1660. doi: 10.1172/JCI117147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Delius W., Hagbarth K. E., Hongell A., Wallin B. G. Manoeuvres affecting sympathetic outflow in human muscle nerves. Acta Physiol Scand. 1972 Jan;84(1):82–94. doi: 10.1111/j.1748-1716.1972.tb05157.x. [DOI] [PubMed] [Google Scholar]
  6. Donald D. E., Rowlands D. J., Ferguson D. A. Similarity of blood flow in the normal and the sympathectomized dog hind limb during graded exercise. Circ Res. 1970 Feb;26(2):185–199. doi: 10.1161/01.res.26.2.185. [DOI] [PubMed] [Google Scholar]
  7. Duhaylongsod F. G., Griebel J. A., Bacon D. S., Wolfe W. G., Piantadosi C. A. Effects of muscle contraction on cytochrome a,a3 redox state. J Appl Physiol (1985) 1993 Aug;75(2):790–797. doi: 10.1152/jappl.1993.75.2.790. [DOI] [PubMed] [Google Scholar]
  8. Fleckenstein J. L., Watumull D., Bertocci L. A., Parkey R. W., Peshock R. M. Finger-specific flexor recruitment in humans: depiction by exercise-enhanced MRI. J Appl Physiol (1985) 1992 May;72(5):1974–1977. doi: 10.1152/jappl.1992.72.5.1974. [DOI] [PubMed] [Google Scholar]
  9. Granger H. J., Goodman A. H., Granger D. N. Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Circ Res. 1976 May;38(5):379–385. doi: 10.1161/01.res.38.5.379. [DOI] [PubMed] [Google Scholar]
  10. Hampson N. B., Piantadosi C. A. Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia. J Appl Physiol (1985) 1988 Jun;64(6):2449–2457. doi: 10.1152/jappl.1988.64.6.2449. [DOI] [PubMed] [Google Scholar]
  11. Hartling O. J., Trap-Jensen J. Haemodynamic and metabolic effects of alpha-adrenoceptor blockade with phentolamine at rest and during forearm exercise. Clin Sci (Lond) 1983 Sep;65(3):247–253. doi: 10.1042/cs0650247. [DOI] [PubMed] [Google Scholar]
  12. Jacobsen T. N., Morgan B. J., Scherrer U., Vissing S. F., Lange R. A., Johnson N., Ring W. S., Rahko P. S., Hanson P., Victor R. G. Relative contributions of cardiopulmonary and sinoaortic baroreflexes in causing sympathetic activation in the human skeletal muscle circulation during orthostatic stress. Circ Res. 1993 Aug;73(2):367–378. doi: 10.1161/01.res.73.2.367. [DOI] [PubMed] [Google Scholar]
  13. Joyner M. J. Does the pressor response to ischemic exercise improve blood flow to contracting muscles in humans? J Appl Physiol (1985) 1991 Oct;71(4):1496–1501. doi: 10.1152/jappl.1991.71.4.1496. [DOI] [PubMed] [Google Scholar]
  14. Joyner M. J., Lennon R. L., Wedel D. J., Rose S. H., Shepherd J. T. Blood flow to contracting human muscles: influence of increased sympathetic activity. J Appl Physiol (1985) 1990 Apr;68(4):1453–1457. doi: 10.1152/jappl.1990.68.4.1453. [DOI] [PubMed] [Google Scholar]
  15. Jöbsis F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977 Dec 23;198(4323):1264–1267. doi: 10.1126/science.929199. [DOI] [PubMed] [Google Scholar]
  16. KJELLMER I. ON THE COMPETITION BETWEEN METABOLIC VASODILATATION AND NEUROGENIC VASOCONSTRICTION IN SKELETAL MUSCLE. Acta Physiol Scand. 1965 Apr;63:450–459. doi: 10.1111/j.1748-1716.1965.tb04088.x. [DOI] [PubMed] [Google Scholar]
  17. Kaufman M. P., Longhurst J. C., Rybicki K. J., Wallach J. H., Mitchell J. H. Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):105–112. doi: 10.1152/jappl.1983.55.1.105. [DOI] [PubMed] [Google Scholar]
  18. Lundberg J. M., Franco-Cereceda A., Lacroix J. S., Pernow J. Neuropeptide Y and sympathetic neurotransmission. Ann N Y Acad Sci. 1990;611:166–174. doi: 10.1111/j.1749-6632.1990.tb48930.x. [DOI] [PubMed] [Google Scholar]
  19. Mancini D. M., Bolinger L., Li H., Kendrick K., Chance B., Wilson J. R. Validation of near-infrared spectroscopy in humans. J Appl Physiol (1985) 1994 Dec;77(6):2740–2747. doi: 10.1152/jappl.1994.77.6.2740. [DOI] [PubMed] [Google Scholar]
  20. Mark A. L., Victor R. G., Nerhed C., Wallin B. G. Microneurographic studies of the mechanisms of sympathetic nerve responses to static exercise in humans. Circ Res. 1985 Sep;57(3):461–469. doi: 10.1161/01.res.57.3.461. [DOI] [PubMed] [Google Scholar]
  21. McGillivray-Anderson K. M., Faber J. E. Effect of acidosis on contraction of microvascular smooth muscle by alpha 1- and alpha 2-adrenoceptors. Implications for neural and metabolic regulation. Circ Res. 1990 Jun;66(6):1643–1657. doi: 10.1161/01.res.66.6.1643. [DOI] [PubMed] [Google Scholar]
  22. McGillivray-Anderson K. M., Faber J. E. Effect of reduced blood flow on alpha 1- and alpha 2-adrenoceptor constriction of rat skeletal muscle microvessels. Circ Res. 1991 Jul;69(1):165–173. doi: 10.1161/01.res.69.1.165. [DOI] [PubMed] [Google Scholar]
  23. Medgett I. C., Hicks P. E., Langer S. Z. Effect of acidosis on alpha 1- and alpha 2-adrenoceptor-mediated vasoconstrictor responses in isolated arteries. Eur J Pharmacol. 1987 Mar 31;135(3):443–447. doi: 10.1016/0014-2999(87)90698-4. [DOI] [PubMed] [Google Scholar]
  24. Mense S., Stahnke M. Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. J Physiol. 1983 Sep;342:383–397. doi: 10.1113/jphysiol.1983.sp014857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mitchell J. H., Kaufman M. P., Iwamoto G. A. The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annu Rev Physiol. 1983;45:229–242. doi: 10.1146/annurev.ph.45.030183.001305. [DOI] [PubMed] [Google Scholar]
  26. Parsons W. J., Rembert J. C., Bauman R. P., Duhaylongsod F. G., Greenfield J. C., Jr, Piantadosi C. A. Myocardial oxygenation in dogs during partial and complete coronary artery occlusion. Circ Res. 1993 Sep;73(3):458–464. doi: 10.1161/01.res.73.3.458. [DOI] [PubMed] [Google Scholar]
  27. Peterson D. F., Armstrong R. B., Laughlin M. H. Sympathetic neural influences on muscle blood flow in rats during submaximal exercise. J Appl Physiol (1985) 1988 Jul;65(1):434–440. doi: 10.1152/jappl.1988.65.1.434. [DOI] [PubMed] [Google Scholar]
  28. Piantadosi C. A. Behavior of the copper band of cytochrome c oxidase in rat brain during FC-43-for-blood substitution. Adv Exp Med Biol. 1989;248:81–90. doi: 10.1007/978-1-4684-5643-1_11. [DOI] [PubMed] [Google Scholar]
  29. Piantadosi C. A., Duhaylongsod F. G. Near infrared spectroscopy: in situ studies of skeletal and cardiac muscle. Adv Exp Med Biol. 1994;361:157–161. doi: 10.1007/978-1-4615-1875-4_20. [DOI] [PubMed] [Google Scholar]
  30. Pryor S. L., Lewis S. F., Haller R. G., Bertocci L. A., Victor R. G. Impairment of sympathetic activation during static exercise in patients with muscle phosphorylase deficiency (McArdle's disease). J Clin Invest. 1990 May;85(5):1444–1449. doi: 10.1172/JCI114589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. REMENSNYDER J. P., MITCHELL J. H., SARNOFF S. J. Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res. 1962 Sep;11:370–380. doi: 10.1161/01.res.11.3.370. [DOI] [PubMed] [Google Scholar]
  32. Richter E. A., Kiens B., Hargreaves M., Kjaer M. Effect of arm-cranking on leg blood flow and noradrenaline spillover during leg exercise in man. Acta Physiol Scand. 1992 Jan;144(1):9–14. doi: 10.1111/j.1748-1716.1992.tb09261.x. [DOI] [PubMed] [Google Scholar]
  33. Rotto D. M., Stebbins C. L., Kaufman M. P. Reflex cardiovascular and ventilatory responses to increasing H+ activity in cat hindlimb muscle. J Appl Physiol (1985) 1989 Jul;67(1):256–263. doi: 10.1152/jappl.1989.67.1.256. [DOI] [PubMed] [Google Scholar]
  34. Saito M., Kagaya A., Ogita F., Shinohara M. Changes in muscle sympathetic nerve activity and calf blood flow during combined leg and forearm exercise. Acta Physiol Scand. 1992 Dec;146(4):449–456. doi: 10.1111/j.1748-1716.1992.tb09446.x. [DOI] [PubMed] [Google Scholar]
  35. Savard G., Strange S., Kiens B., Richter E. A., Christensen N. J., Saltin B. Noradrenaline spillover during exercise in active versus resting skeletal muscle in man. Acta Physiol Scand. 1987 Dec;131(4):507–515. doi: 10.1111/j.1748-1716.1987.tb08270.x. [DOI] [PubMed] [Google Scholar]
  36. Scherrer U., Pryor S. L., Bertocci L. A., Victor R. G. Arterial baroreflex buffering of sympathetic activation during exercise-induced elevations in arterial pressure. J Clin Invest. 1990 Dec;86(6):1855–1861. doi: 10.1172/JCI114916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Seals D. R. Sympathetic neural discharge and vascular resistance during exercise in humans. J Appl Physiol (1985) 1989 May;66(5):2472–2478. doi: 10.1152/jappl.1989.66.5.2472. [DOI] [PubMed] [Google Scholar]
  38. Secher N. H., Clausen J. P., Klausen K., Noer I., Trap-Jensen J. Central and regional circulatory effects of adding arm exercise to leg exercise. Acta Physiol Scand. 1977 Jul;100(3):288–297. doi: 10.1111/j.1748-1716.1977.tb05952.x. [DOI] [PubMed] [Google Scholar]
  39. Siggaard-Andersen J. Venous occlusion plethysmography on the calf. Evaluation of diagnosis and results in vascular surgery. Dan Med Bull. 1970 Jun;17(Suppl):1–68. [PubMed] [Google Scholar]
  40. Sinoway L. I., Rea R. F., Mosher T. J., Smith M. B., Mark A. L. Hydrogen ion concentration is not the sole determinant of muscle metaboreceptor responses in humans. J Clin Invest. 1992 Jun;89(6):1875–1884. doi: 10.1172/JCI115792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sinoway L. I., Wilson J. S., Zelis R., Shenberger J., McLaughlin D. P., Morris D. L., Day F. P. Sympathetic tone affects human limb vascular resistance during a maximal metabolic stimulus. Am J Physiol. 1988 Oct;255(4 Pt 2):H937–H946. doi: 10.1152/ajpheart.1988.255.4.H937. [DOI] [PubMed] [Google Scholar]
  42. Sinoway L., Prophet S. Skeletal muscle metaboreceptor stimulation opposes peak metabolic vasodilation in humans. Circ Res. 1990 Jun;66(6):1576–1584. doi: 10.1161/01.res.66.6.1576. [DOI] [PubMed] [Google Scholar]
  43. Strandell T., Shepherd J. T. The effect in humans of increased sympathetic activity on the blood flow to active muscles. Acta Med Scand Suppl. 1967;472:146–167. doi: 10.1111/j.0954-6820.1967.tb12622.x. [DOI] [PubMed] [Google Scholar]
  44. Tamura M., Hazeki O., Nioka S., Chance B. In vivo study of tissue oxygen metabolism using optical and nuclear magnetic resonance spectroscopies. Annu Rev Physiol. 1989;51:813–834. doi: 10.1146/annurev.ph.51.030189.004121. [DOI] [PubMed] [Google Scholar]
  45. Tateishi J., Faber J. E. ATP-sensitive K+ channels mediate alpha 2D-adrenergic receptor contraction of arteriolar smooth muscle and reversal of contraction by hypoxia. Circ Res. 1995 Jan;76(1):53–63. doi: 10.1161/01.res.76.1.53. [DOI] [PubMed] [Google Scholar]
  46. Vallbo A. B., Hagbarth K. E., Torebjörk H. E., Wallin B. G. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979 Oct;59(4):919–957. doi: 10.1152/physrev.1979.59.4.919. [DOI] [PubMed] [Google Scholar]
  47. Vanhoutte P. M., Verbeuren T. J., Webb R. C. Local modulation of adrenergic neuroeffector interaction in the blood vessel well. Physiol Rev. 1981 Jan;61(1):151–247. doi: 10.1152/physrev.1981.61.1.151. [DOI] [PubMed] [Google Scholar]
  48. Victor R. G., Bertocci L. A., Pryor S. L., Nunnally R. L. Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans. J Clin Invest. 1988 Oct;82(4):1301–1305. doi: 10.1172/JCI113730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Victor R. G., Leimbach W. N., Jr Effects of lower body negative pressure on sympathetic discharge to leg muscles in humans. J Appl Physiol (1985) 1987 Dec;63(6):2558–2562. doi: 10.1152/jappl.1987.63.6.2558. [DOI] [PubMed] [Google Scholar]
  50. Victor R. G., Seals D. R., Mark A. L. Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans. J Clin Invest. 1987 Feb;79(2):508–516. doi: 10.1172/JCI112841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Victor R. G., Secher N. H., Lyson T., Mitchell J. H. Central command increases muscle sympathetic nerve activity during intense intermittent isometric exercise in humans. Circ Res. 1995 Jan;76(1):127–131. doi: 10.1161/01.res.76.1.127. [DOI] [PubMed] [Google Scholar]
  52. Williams C. A., Mudd J. G., Lind A. R. Sympathetic control of the forearm blood flow in man during brief isometric contractions. Eur J Appl Physiol Occup Physiol. 1985;54(2):156–162. doi: 10.1007/BF02335923. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES