Abstract
Anticancer therapy with doxorubicin (DOX) and other quinone anthracyclines is limited by severe cardiotoxicity, reportedly because semiquinone metabolites delocalize Fe(II) from ferritin and generate hydrogen peroxide, thereby promoting hydroxyl radical formation and lipid peroxidation. Cardioprotective interventions with antioxidants or chelators have nevertheless produced conflicting results. To investigate the role and mechanism(s) of cardiac lipid peroxidation in a clinical setting, we measured lipid conjugated dienes (CD) and hydroperoxides in blood plasma samples from the coronary sinus and femoral artery of nine cancer patients undergoing intravenous treatments with DOX. Before treatment, CD were unexpectedly higher in coronary sinus than in femoral artery (342 +/- 131 vs 112 +/- 44 nmol/ml, mean +/- SD; P < 0.01), showing that cardiac tissues were spontaneously involved in lipid peroxidation. This was not observed in ten patients undergoing cardiac catheterization for the diagnosis of arrhythmias or valvular dysfunctions, indicating that myocardial lipid peroxidation was specifically increased by the presence of cancer. The infusion of a standard dose of 60 mg DOX/m(2) rapidly ( approximately 5 min) abolished the difference in CD levels between coronary sinus and femoral artery (134 +/- 95 vs 112 +/- 37 nmol/ml); moreover, dose fractionation studies showed that cardiac release of CD and hydroperoxides decreased by approximately 80% in response to the infusion of as little as 13 mg DOX/m(2). Thus, DOX appeared to inhibit cardiac lipid peroxidation in a rather potent manner. Corollary in vitro experiments were performed using myocardial biopsies from patients undergoing aortocoronary bypass grafting. These experiments suggested that the spontaneous exacerbation of lipid peroxidation probably involved preexisting Fe(II) complexes, which could not be sequestered adequately by cardiac isoferritins and became redox inactive when hydrogen peroxide was included to simulate DOX metabolism and hydroxyl radical formation. Collectively, these in vitro and in vivo studies provide novel evidence for a possible inhibition of cardiac lipid peroxidation in DOX-treated patients. Other processes might therefore contribute to the cardiotoxicity of DOX.
Full Text
The Full Text of this article is available as a PDF (261.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambrosio G., Flaherty J. T., Duilio C., Tritto I., Santoro G., Elia P. P., Condorelli M., Chiariello M. Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest. 1991 Jun;87(6):2056–2066. doi: 10.1172/JCI115236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baird M. B., Hough J. L., Sfeir G. T. Accumulation of malondialdehyde in mouse heart following acute dosing with adriamycin is strain specific and unaffected by cardiac catalase status. Res Commun Chem Pathol Pharmacol. 1993 Jun;80(3):363–366. [PubMed] [Google Scholar]
- Borrello S., De Leo M. E., Wohlrab H., Galeotti T. Manganese deficiency and transcriptional regulation of mitochondrial superoxide dismutase in hepatomas. FEBS Lett. 1992 Oct 5;310(3):249–254. doi: 10.1016/0014-5793(92)81342-j. [DOI] [PubMed] [Google Scholar]
- Borén J., Graham L., Wettesten M., Scott J., White A., Olofsson S. O. The assembly and secretion of ApoB 100-containing lipoproteins in Hep G2 cells. ApoB 100 is cotranslationally integrated into lipoproteins. J Biol Chem. 1992 May 15;267(14):9858–9867. [PubMed] [Google Scholar]
- Braughler J. M., Duncan L. A., Chase R. L. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J Biol Chem. 1986 Aug 5;261(22):10282–10289. [PubMed] [Google Scholar]
- Brown K. M., Morrice P. C., Duthie G. G. Vitamin E supplementation suppresses indexes of lipid peroxidation and platelet counts in blood of smokers and nonsmokers but plasma lipoprotein concentrations remain unchanged. Am J Clin Nutr. 1994 Sep;60(3):383–387. doi: 10.1093/ajcn/60.3.383. [DOI] [PubMed] [Google Scholar]
- Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/s0076-6879(78)52032-6. [DOI] [PubMed] [Google Scholar]
- Carbonneau M. A., Peuchant E., Sess D., Canioni P., Clerc M. Free and bound malondialdehyde measured as thiobarbituric acid adduct by HPLC in serum and plasma. Clin Chem. 1991 Aug;37(8):1423–1429. [PubMed] [Google Scholar]
- Cecchini R., Aruoma O. I., Halliwell B. The action of hydrogen peroxide on the formation of thiobarbituric acid-reactive material from microsomes, liposomes or from DNA damaged by bleomycin or phenanthroline. Artefacts in the thiobarbituric acid test. Free Radic Res Commun. 1990;10(4-5):245–258. doi: 10.3109/10715769009149893. [DOI] [PubMed] [Google Scholar]
- Chautan M., Leonardi J., Calaf R., Lechene P., Grataroli R., Portugal H., Pauli A. M., Lafont H., Nalbone G. Heart and liver membrane phospholipid homeostasis during acute administration of various antitumoral drugs to the rat. Biochem Pharmacol. 1992 Sep 25;44(6):1139–1147. doi: 10.1016/0006-2952(92)90378-v. [DOI] [PubMed] [Google Scholar]
- Clot P., Tabone M., Aricò S., Albano E. Monitoring oxidative damage in patients with liver cirrhosis and different daily alcohol intake. Gut. 1994 Nov;35(11):1637–1643. doi: 10.1136/gut.35.11.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corongiu F. P., Banni S., Dessi M. A. Conjugated dienes detected in tissue lipid extracts by second derivative spectrophotometry. Free Radic Biol Med. 1989;7(2):183–186. doi: 10.1016/0891-5849(89)90012-9. [DOI] [PubMed] [Google Scholar]
- Corongiu F. P., Poli G., Dianzani M. U., Cheeseman K. H., Slater T. F. Lipid peroxidation and molecular damage to polyunsaturated fatty acids in rat liver. Recognition of two classes of hydroperoxides formed under conditions in vivo. Chem Biol Interact. 1986 Sep;59(2):147–155. doi: 10.1016/s0009-2797(86)80062-x. [DOI] [PubMed] [Google Scholar]
- Crichton R. R., Ward R. J. Iron metabolism--new perspectives in view. Biochemistry. 1992 Nov 24;31(46):11255–11264. doi: 10.1021/bi00161a001. [DOI] [PubMed] [Google Scholar]
- Doroshow J. H. Doxorubicin-induced cardiac toxicity. N Engl J Med. 1991 Mar 21;324(12):843–845. doi: 10.1056/NEJM199103213241210. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Fischer J. G., Tackett R. L., Howerth E. W., Johnson M. A. Copper and selenium deficiencies do not enhance the cardiotoxicity in rats due to chronic doxorubicin treatment. J Nutr. 1992 Nov;122(11):2128–2137. doi: 10.1093/jn/122.11.2128. [DOI] [PubMed] [Google Scholar]
- Frei B., Gaziano J. M. Content of antioxidants, preformed lipid hydroperoxides, and cholesterol as predictors of the susceptibility of human LDL to metal ion-dependent and -independent oxidation. J Lipid Res. 1993 Dec;34(12):2135–2145. [PubMed] [Google Scholar]
- Girotti M. J., Khan N., McLellan B. A. Early measurement of systemic lipid peroxidation products in the plasma of major blunt trauma patients. J Trauma. 1991 Jan;31(1):32–35. doi: 10.1097/00005373-199101000-00007. [DOI] [PubMed] [Google Scholar]
- Goddard J. G., Sweeney G. D. Delayed, ferrous iron-dependent peroxidation of rat liver microsomes. Arch Biochem Biophys. 1987 Dec;259(2):372–381. doi: 10.1016/0003-9861(87)90503-0. [DOI] [PubMed] [Google Scholar]
- Keen R. R., Stella L., Flanigan D. P., Lands W. E. Differential detection of plasma hydroperoxides in sepsis. Crit Care Med. 1991 Sep;19(9):1114–1119. doi: 10.1097/00003246-199109000-00004. [DOI] [PubMed] [Google Scholar]
- Ko K. M., Godin D. V. Ferric ion-induced lipid peroxidation in erythrocyte membranes: effects of phytic acid and butylated hydroxytoluene. Mol Cell Biochem. 1990 Jun 25;95(2):125–131. doi: 10.1007/BF00219970. [DOI] [PubMed] [Google Scholar]
- Kukiełka E., Cederbaum A. I. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron. Arch Biochem Biophys. 1990 Dec;283(2):326–333. doi: 10.1016/0003-9861(90)90650-n. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Ledwozyw A., Michalak J., Stepień A., Kadziołka A. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta. 1986 Mar 28;155(3):275–283. doi: 10.1016/0009-8981(86)90247-0. [DOI] [PubMed] [Google Scholar]
- Levi S., Santambrogio P., Cozzi A., Rovida E., Corsi B., Tamborini E., Spada S., Albertini A., Arosio P. The role of the L-chain in ferritin iron incorporation. Studies of homo and heteropolymers. J Mol Biol. 1994 May 20;238(5):649–654. doi: 10.1006/jmbi.1994.1325. [DOI] [PubMed] [Google Scholar]
- Levi S., Yewdall S. J., Harrison P. M., Santambrogio P., Cozzi A., Rovida E., Albertini A., Arosio P. Evidence of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem J. 1992 Dec 1;288(Pt 2):591–596. doi: 10.1042/bj2880591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luzzago A., Arosio P., Iacobello C., Ruggeri G., Capucci L., Brocchi E., De Simone F., Gamba D., Gabri E., Levi S. Immunochemical characterization of human liver and heart ferritins with monoclonal antibodies. Biochim Biophys Acta. 1986 Jul 25;872(1-2):61–71. doi: 10.1016/0167-4838(86)90147-0. [DOI] [PubMed] [Google Scholar]
- Malisza K. L., Hasinoff B. B. Doxorubicin reduces the iron(III) complexes of the hydrolysis products of the antioxidant cardioprotective agent dexrazoxane (ICRF-187) and produces hydroxyl radicals. Arch Biochem Biophys. 1995 Feb 1;316(2):680–688. doi: 10.1006/abbi.1995.1091. [DOI] [PubMed] [Google Scholar]
- Malvy D. J., Burtschy B., Arnaud J., Sommelet D., Leverger G., Dostalova L., Drucker J., Amédée-Manesme O. Serum beta-carotene and antioxidant micronutrients in children with cancer. The 'Cancer in Children and Antioxidant Micronutrients' French Study Group. Int J Epidemiol. 1993 Oct;22(5):761–771. doi: 10.1093/ije/22.5.761. [DOI] [PubMed] [Google Scholar]
- McDonagh J., Fossel E. T., Kradin R. L., Dubinett S. M., Laposata M., Hallaq Y. A. Effects of tumor necrosis factor-alpha on peroxidation of plasma lipoprotein lipids in experimental animals and patients. Blood. 1992 Dec 15;80(12):3217–3226. [PubMed] [Google Scholar]
- Miller D. M., Buettner G. R., Aust S. D. Transition metals as catalysts of "autoxidation" reactions. Free Radic Biol Med. 1990;8(1):95–108. doi: 10.1016/0891-5849(90)90148-c. [DOI] [PubMed] [Google Scholar]
- Minotti G. Adriamycin-dependent release of iron from microsomal membranes. Arch Biochem Biophys. 1989 Jan;268(1):398–403. doi: 10.1016/0003-9861(89)90601-2. [DOI] [PubMed] [Google Scholar]
- Minotti G., Aust S. D. An investigation into the mechanism of citrate-Fe2+-dependent lipid peroxidation. Free Radic Biol Med. 1987;3(6):379–387. doi: 10.1016/0891-5849(87)90016-5. [DOI] [PubMed] [Google Scholar]
- Minotti G., Aust S. D. Redox cycling of iron and lipid peroxidation. Lipids. 1992 Mar;27(3):219–226. doi: 10.1007/BF02536182. [DOI] [PubMed] [Google Scholar]
- Minotti G., Aust S. D. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem. 1987 Jan 25;262(3):1098–1104. [PubMed] [Google Scholar]
- Minotti G., Cavaliere A. F., Mordente A., Rossi M., Schiavello R., Zamparelli R., Possati G. Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines. Novel linkage between anthracycline metabolism and iron-induced cardiotoxicity. J Clin Invest. 1995 Apr;95(4):1595–1605. doi: 10.1172/JCI117833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minotti G., Ikeda-Saito M. Fe(II) oxidation and Fe(III) incorporation by the M(r) 66,000 microsomal iron protein that stimulates NADPH oxidation. J Biol Chem. 1992 Apr 15;267(11):7611–7614. [PubMed] [Google Scholar]
- Minotti G. NADPH- and adriamycin-dependent microsomal release of iron and lipid peroxidation. Arch Biochem Biophys. 1990 Mar;277(2):268–276. doi: 10.1016/0003-9861(90)90578-m. [DOI] [PubMed] [Google Scholar]
- Minotti G. Sources and role of iron in lipid peroxidation. Chem Res Toxicol. 1993 Mar-Apr;6(2):134–146. doi: 10.1021/tx00032a001. [DOI] [PubMed] [Google Scholar]
- Mor V., Laliberte L., Morris J. N., Wiemann M. The Karnofsky Performance Status Scale. An examination of its reliability and validity in a research setting. Cancer. 1984 May 1;53(9):2002–2007. doi: 10.1002/1097-0142(19840501)53:9<2002::aid-cncr2820530933>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
- Mordente A., Santini S. A., Miggiano A. G., Martorana G. E., Petiti T., Minotti G., Giardina B. The interaction of short chain coenzyme Q analogs with different redox states of myoglobin. J Biol Chem. 1994 Nov 4;269(44):27394–27400. [PubMed] [Google Scholar]
- Morrow J. D., Awad J. A., Boss H. J., Blair I. A., Roberts L. J., 2nd Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10721–10725. doi: 10.1073/pnas.89.22.10721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrow J. D., Frei B., Longmire A. W., Gaziano J. M., Lynch S. M., Shyr Y., Strauss W. E., Oates J. A., Roberts L. J., 2nd Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med. 1995 May 4;332(18):1198–1203. doi: 10.1056/NEJM199505043321804. [DOI] [PubMed] [Google Scholar]
- Muggia F. M. Cytoprotection: concepts and challenges. Support Care Cancer. 1994 Nov;2(6):377–379. doi: 10.1007/BF00344051. [DOI] [PubMed] [Google Scholar]
- Muindi J. F., Scher H. I., Rigas J. R., Warrell R. P., Jr, Young C. W. Elevated plasma lipid peroxide content correlates with rapid plasma clearance of all-trans-retinoic acid in patients with advanced cancer. Cancer Res. 1994 Apr 15;54(8):2125–2128. [PubMed] [Google Scholar]
- Mustonen P., Kinnunen P. K. Activation of phospholipase A2 by adriamycin in vitro. Role of drug-lipid interactions. J Biol Chem. 1991 Apr 5;266(10):6302–6307. [PubMed] [Google Scholar]
- Myers C., Bonow R., Palmeri S., Jenkins J., Corden B., Locker G., Doroshow J., Epstein S. A randomized controlled trial assessing the prevention of doxorubicin cardiomyopathy by N-acetylcysteine. Semin Oncol. 1983 Mar;10(1 Suppl 1):53–55. [PubMed] [Google Scholar]
- Nourooz-Zadeh J., Tajaddini-Sarmadi J., Wolff S. P. Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem. 1994 Aug 1;220(2):403–409. doi: 10.1006/abio.1994.1357. [DOI] [PubMed] [Google Scholar]
- Olson R. D., Mushlin P. S. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J. 1990 Oct;4(13):3076–3086. [PubMed] [Google Scholar]
- Powis G. Free radical formation by antitumor quinones. Free Radic Biol Med. 1989;6(1):63–101. doi: 10.1016/0891-5849(89)90162-7. [DOI] [PubMed] [Google Scholar]
- Praet M., Ruysschaert J. M. In-vivo and in-vitro mitochondrial membrane damages induced in mice by adriamycin and derivatives. Biochim Biophys Acta. 1993 Jun 18;1149(1):79–85. doi: 10.1016/0005-2736(93)90027-w. [DOI] [PubMed] [Google Scholar]
- Rajagopalan S., Politi P. M., Sinha B. K., Myers C. E. Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Res. 1988 Sep 1;48(17):4766–4769. [PubMed] [Google Scholar]
- Reiter R., Burk R. F. Effect of oxygen tension on the generation of alkanes and malondialdehyde by peroxidizing rat liver microsomes. Biochem Pharmacol. 1987 Mar 15;36(6):925–929. doi: 10.1016/0006-2952(87)90186-9. [DOI] [PubMed] [Google Scholar]
- Rohn T. T., Hinds T. R., Vincenzi F. F. Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem Pharmacol. 1993 Aug 3;46(3):525–534. doi: 10.1016/0006-2952(93)90530-a. [DOI] [PubMed] [Google Scholar]
- Rothman R. J., Serroni A., Farber J. L. Cellular pool of transient ferric iron, chelatable by deferoxamine and distinct from ferritin, that is involved in oxidative cell injury. Mol Pharmacol. 1992 Oct;42(4):703–710. [PubMed] [Google Scholar]
- Ryan T. P., Aust S. D. The role of iron in oxygen-mediated toxicities. Crit Rev Toxicol. 1992;22(2):119–141. doi: 10.3109/10408449209146308. [DOI] [PubMed] [Google Scholar]
- Ryan T. P., Samokyszyn V. M., Dellis S., Aust S. D. Effects of (+)-1,2-bis(3,5-dioxopiperazin-1-yl)propane (ADR-529) on iron-catalyzed lipid peroxidation. Chem Res Toxicol. 1990 Jul-Aug;3(4):384–390. doi: 10.1021/tx00016a018. [DOI] [PubMed] [Google Scholar]
- SELDINGER S. I. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta radiol. 1953 May;39(5):368–376. doi: 10.3109/00016925309136722. [DOI] [PubMed] [Google Scholar]
- Seiser C., Teixeira S., Kühn L. C. Interleukin-2-dependent transcriptional and post-transcriptional regulation of transferrin receptor mRNA. J Biol Chem. 1993 Jun 25;268(18):13074–13080. [PubMed] [Google Scholar]
- Sevanian A., Kim E. Phospholipase A2 dependent release of fatty acids from peroxidized membranes. J Free Radic Biol Med. 1985;1(4):263–271. doi: 10.1016/0748-5514(85)90130-8. [DOI] [PubMed] [Google Scholar]
- Situnayake R. D., Crump B. J., Zezulka A. V., Davis M., McConkey B., Thurnham D. I. Measurement of conjugated diene lipids by derivative spectroscopy in heptane extracts of plasma. Ann Clin Biochem. 1990 May;27(Pt 3):258–266. doi: 10.1177/000456329002700313. [DOI] [PubMed] [Google Scholar]
- Siveski-Iliskovic N., Hill M., Chow D. A., Singal P. K. Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation. 1995 Jan 1;91(1):10–15. doi: 10.1161/01.cir.91.1.10. [DOI] [PubMed] [Google Scholar]
- Slater T. F. Overview of methods used for detecting lipid peroxidation. Methods Enzymol. 1984;105:283–293. doi: 10.1016/s0076-6879(84)05036-9. [DOI] [PubMed] [Google Scholar]
- Smith G. N., Taj M., Braganza J. M. On the identification of a conjugated diene component of duodenal bile as 9Z,11E-octadecadienoic acid. Free Radic Biol Med. 1991;10(1):13–21. doi: 10.1016/0891-5849(91)90016-v. [DOI] [PubMed] [Google Scholar]
- Sridhar R., Dwivedi C., Anderson J., Baker P. B., Sharma H. M., Desai P., Engineer F. N. Effects of verapamil on the acute toxicity of doxorubicin in vivo. J Natl Cancer Inst. 1992 Nov 4;84(21):1653–1660. doi: 10.1093/jnci/84.21.1653. [DOI] [PubMed] [Google Scholar]
- Stoscheck C. M. Quantitation of protein. Methods Enzymol. 1990;182:50–68. doi: 10.1016/0076-6879(90)82008-p. [DOI] [PubMed] [Google Scholar]
- Stähelin H. B. Critical reappraisal of vitamins and trace minerals in nutritional support of cancer patients. Support Care Cancer. 1993 Nov;1(6):295–297. doi: 10.1007/BF00364966. [DOI] [PubMed] [Google Scholar]
- Tesoriere L., Ciaccio M., Valenza M., Bongiorno A., Maresi E., Albiero R., Livrea M. A. Effect of vitamin A administration on resistance of rat heart against doxorubicin-induced cardiotoxicity and lethality. J Pharmacol Exp Ther. 1994 Apr;269(1):430–436. [PubMed] [Google Scholar]
- Ulvik R., Romslo I. Studies on the mobilization of iron from ferritin by isolated rat liver mitochondria. Biochim Biophys Acta. 1979 Dec 3;588(2):256–271. doi: 10.1016/0304-4165(79)90209-5. [DOI] [PubMed] [Google Scholar]
- Ursini F., Maiorino M., Hochstein P., Ernster L. Microsomal lipid peroxidation: mechanisms of initiation. The role of iron and iron chelators. Free Radic Biol Med. 1989;6(1):31–36. doi: 10.1016/0891-5849(89)90156-1. [DOI] [PubMed] [Google Scholar]
- Watts R. G. Severe and fatal anthracycline cardiotoxicity at cumulative doses below 400 mg/m2: evidence for enhanced toxicity with multiagent chemotherapy. Am J Hematol. 1991 Mar;36(3):217–218. doi: 10.1002/ajh.2830360314. [DOI] [PubMed] [Google Scholar]
- Wissel P. S., Galbraith R. A., Sassa S., Kappas A. Tin-protoporphyrin inhibits heme oxygenase and prevents the decline in hepatic heme and cytochrome P-450 contents produced in nude mice by tumor transplantation. Biochem Biophys Res Commun. 1988 Jan 29;150(2):822–827. doi: 10.1016/0006-291x(88)90465-2. [DOI] [PubMed] [Google Scholar]
- de Silva D., Aust S. D. Stoichiometry of Fe(II) oxidation during ceruloplasmin-catalyzed loading of ferritin. Arch Biochem Biophys. 1992 Oct;298(1):259–264. doi: 10.1016/0003-9861(92)90121-c. [DOI] [PubMed] [Google Scholar]