Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Aug 1;98(3):698–705. doi: 10.1172/JCI118841

Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro.

G van der Pluijm 1, H Vloedgraven 1, E van Beek 1, L van der Wee-Pals 1, C Löwik 1, S Papapoulos 1
PMCID: PMC507479  PMID: 8698861

Abstract

Bisphosphonates are used with increasing frequency in the management of skeletal complications in patients with breast cancer. In this paper, we have investigated whether bisphosphonates, besides their known beneficial effects on tumor-associated osteoclastic resorption, are capable of inhibiting breast cancer cell adhesion to bone matrix. For that we used two in vitro models for bone matrix (cortical bone slices and cryostat sections of trabecular bone from neonatal mouse tails). Four bone matrix-bound nitrogen-containing bisphosphonates (pamidronate, olpadronate, alendronate, and ibandronate) inhibited adhesion and spreading of breast cancer cells to bone dose-dependently, whereas etidronate and clodronate had little or no effect. Strikingly, the relative order of potency of the bisphosphonates in inhibiting the adhesion of cancer cells to cortical and trabecular bone corresponded to their relative antiresorptive potencies in vivo as well as their ranking in in vitro bone resorption assays with predictive value for their clinical efficacy. It appears that nitrogen-containing bisphosphonates alter selectively the adhesive properties of the extracellular bone matrix preventing the attachment of breast cancer cells to it. Besides the beneficial effects of bisphosphonates on tumor-induced osteoclastic resorption, the previously unrecognized effect presented in this paper makes these agents suitable for earlier pharmacologic intervention in patients with breast cancer at risk of developing bone metastases.

Full Text

The Full Text of this article is available as a PDF (536.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boonekamp P. M., Löwik C. W., van der Wee-Pals L. J., van Wijk-van Lennep M. L., Bijvoet O. L. Enhancement of the inhibitory action of APD on the transformation of osteoclast precursors into resorbing cells after dimethylation of the amino group. Bone Miner. 1987 Feb;2(1):29–42. [PubMed] [Google Scholar]
  2. Boonekamp P. M., van der Wee-Pals L. J., van Wijk-van Lennep M. M., Thesing C. W., Bijvoet O. L. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner. 1986 Feb;1(1):27–39. [PubMed] [Google Scholar]
  3. Cailleau R., Young R., Olivé M., Reeves W. J., Jr Breast tumor cell lines from pleural effusions. J Natl Cancer Inst. 1974 Sep;53(3):661–674. doi: 10.1093/jnci/53.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chambers T. J., Revell P. A., Fuller K., Athanasou N. A. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci. 1984 Mar;66:383–399. doi: 10.1242/jcs.66.1.383. [DOI] [PubMed] [Google Scholar]
  5. Coleman R. E., Rubens R. D. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987 Jan;55(1):61–66. doi: 10.1038/bjc.1987.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies J., Warwick J., Totty N., Philp R., Helfrich M., Horton M. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol. 1989 Oct;109(4 Pt 1):1817–1826. doi: 10.1083/jcb.109.4.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eilon G., Mundy G. R. Direct resorption of bone by human breast cancer cells in vitro. Nature. 1978 Dec 14;276(5689):726–728. doi: 10.1038/276726a0. [DOI] [PubMed] [Google Scholar]
  8. Elomaa I., Blomqvist C., Gröhn P., Porkka L., Kairento A. L., Selander K., Lamberg-Allardt C., Holmström T. Long-term controlled trial with diphosphonate in patients with osteolytic bone metastases. Lancet. 1983 Jan 22;1(8317):146–149. doi: 10.1016/s0140-6736(83)92755-1. [DOI] [PubMed] [Google Scholar]
  9. Elte J. W., Bijvoet O. L., Cleton F. J., van Oosterom A. T., Sleeboom H. P. Osteolytic bone metastases in breast carcinoma pathogenesis, morbidity and bisphosphonate treatment. Eur J Cancer Clin Oncol. 1986 Apr;22(4):493–500. doi: 10.1016/0277-5379(86)90117-3. [DOI] [PubMed] [Google Scholar]
  10. Fleisch H. Bisphosphonates. Pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs. 1991 Dec;42(6):919–944. doi: 10.2165/00003495-199142060-00003. [DOI] [PubMed] [Google Scholar]
  11. Galasko C. S., Bennett A. Relationship of bone destruction in skeletal metastases to osteoclast activation and prostaglandins. Nature. 1976 Oct 7;263(5577):508–510. doi: 10.1038/263508a0. [DOI] [PubMed] [Google Scholar]
  12. Galasko C. S. Mechanisms of bone destruction in the development of skeletal metastases. Nature. 1976 Oct 7;263(5577):507–508. doi: 10.1038/263507a0. [DOI] [PubMed] [Google Scholar]
  13. Galasko C. S. Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop Relat Res. 1982 Sep;(169):20–27. [PubMed] [Google Scholar]
  14. Garrett I. R. Bone destruction in cancer. Semin Oncol. 1993 Jun;20(3 Suppl 2):4–9. [PubMed] [Google Scholar]
  15. Green J. R., Müller K., Jaeggi K. A. Preclinical pharmacology of CGP 42'446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res. 1994 May;9(5):745–751. doi: 10.1002/jbmr.5650090521. [DOI] [PubMed] [Google Scholar]
  16. Helfrich M. H., Nesbitt S. A., Dorey E. L., Horton M. A. Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a beta 3 integrin. J Bone Miner Res. 1992 Mar;7(3):335–343. doi: 10.1002/jbmr.5650070314. [DOI] [PubMed] [Google Scholar]
  17. Kanis J. A., McCloskey E. V., Taube T., O'Rourke N. Rationale for the use of bisphosphonates in bone metastases. Bone. 1991;12 (Suppl 1):S13–S18. doi: 10.1016/8756-3282(91)90061-m. [DOI] [PubMed] [Google Scholar]
  18. Kitazawa S., Maeda S. Development of skeletal metastases. Clin Orthop Relat Res. 1995 Mar;(312):45–50. [PubMed] [Google Scholar]
  19. Kostenuik P. J., Singh G., Suyama K. L., Orr F. W. Stimulation of bone resorption results in a selective increase in the growth rate of spontaneously metastatic Walker 256 cancer cells in bone. Clin Exp Metastasis. 1992 Nov;10(6):411–418. doi: 10.1007/BF00133470. [DOI] [PubMed] [Google Scholar]
  20. Krempien B., Manegold C. Prophylactic treatment of skeletal metastases, tumor-induced osteolysis, and hypercalcemia in rats with the bisphosphonate Cl2MBP. Cancer. 1993 Jul 1;72(1):91–98. doi: 10.1002/1097-0142(19930701)72:1<91::aid-cncr2820720118>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  21. Löwik C. W., van der Pluijm G., van der Wee-Pals L. J., van Treslong-De Groot H. B., Bijvoet O. L. Migration and phenotypic transformation of osteoclast precursors into mature osteoclasts: the effect of a bisphosphonate. J Bone Miner Res. 1988 Apr;3(2):185–192. doi: 10.1002/jbmr.5650030210. [DOI] [PubMed] [Google Scholar]
  22. Mundy G. R. Mechanisms of osteolytic bone destruction. Bone. 1991;12 (Suppl 1):S1–S6. doi: 10.1016/8756-3282(91)90057-p. [DOI] [PubMed] [Google Scholar]
  23. Mühlbauer R. C., Bauss F., Schenk R., Janner M., Bosies E., Strein K., Fleisch H. BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res. 1991 Sep;6(9):1003–1011. doi: 10.1002/jbmr.5650060915. [DOI] [PubMed] [Google Scholar]
  24. Orr F. W., Kostenuik P., Sanchez-Sweatman O. H., Singh G. Mechanisms involved in the metastasis of cancer to bone. Breast Cancer Res Treat. 1993;25(2):151–163. doi: 10.1007/BF00662140. [DOI] [PubMed] [Google Scholar]
  25. Papapoulos S. E., Hoekman K., Löwik C. W., Vermeij P., Bijvoet O. L. Application of an in vitro model and a clinical protocol in the assessment of the potency of a new bisphosphonate. J Bone Miner Res. 1989 Oct;4(5):775–781. doi: 10.1002/jbmr.5650040518. [DOI] [PubMed] [Google Scholar]
  26. Paterson A. H. Bone metastases in breast cancer, prostate cancer and myeloma. Bone. 1987;8 (Suppl 1):S17–S22. [PubMed] [Google Scholar]
  27. Paterson A. H., Powles T. J., Kanis J. A., McCloskey E., Hanson J., Ashley S. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol. 1993 Jan;11(1):59–65. doi: 10.1200/JCO.1993.11.1.59. [DOI] [PubMed] [Google Scholar]
  28. Ross F. P., Chappel J., Alvarez J. I., Sander D., Butler W. T., Farach-Carson M. C., Mintz K. A., Robey P. G., Teitelbaum S. L., Cheresh D. A. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem. 1993 May 5;268(13):9901–9907. [PubMed] [Google Scholar]
  29. Sasaki A., Boyce B. F., Story B., Wright K. R., Chapman M., Boyce R., Mundy G. R., Yoneda T. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res. 1995 Aug 15;55(16):3551–3557. [PubMed] [Google Scholar]
  30. Sato M., Grasser W. Effects of bisphosphonates on isolated rat osteoclasts as examined by reflected light microscopy. J Bone Miner Res. 1990 Jan;5(1):31–40. doi: 10.1002/jbmr.5650050107. [DOI] [PubMed] [Google Scholar]
  31. Schenk R., Eggli P., Fleisch H., Rosini S. Quantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat. Calcif Tissue Int. 1986 Jun;38(6):342–349. doi: 10.1007/BF02555748. [DOI] [PubMed] [Google Scholar]
  32. Sietsema W. K., Ebetino F. H., Salvagno A. M., Bevan J. A. Antiresorptive dose-response relationships across three generations of bisphosphonates. Drugs Exp Clin Res. 1989;15(9):389–396. [PubMed] [Google Scholar]
  33. Yoneda T., Sasaki A., Mundy G. R. Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat. 1994;32(1):73–84. doi: 10.1007/BF00666208. [DOI] [PubMed] [Google Scholar]
  34. van Holten-Verzantvoort A. T., Bijvoet O. L., Cleton F. J., Hermans J., Kroon H. M., Harinck H. I., Vermey P., Elte J. W., Neijt J. P., Beex L. V. Reduced morbidity from skeletal metastases in breast cancer patients during long-term bisphosphonate (APD) treatment. Lancet. 1987 Oct 31;2(8566):983–985. doi: 10.1016/s0140-6736(87)92555-4. [DOI] [PubMed] [Google Scholar]
  35. van Holten-Verzantvoort A. T., Kroon H. M., Bijvoet O. L., Cleton F. J., Beex L. V., Blijham G., Hermans J., Neijt J. P., Papapoulos S. E., Sleeboom H. P. Palliative pamidronate treatment in patients with bone metastases from breast cancer. J Clin Oncol. 1993 Mar;11(3):491–498. doi: 10.1200/JCO.1993.11.3.491. [DOI] [PubMed] [Google Scholar]
  36. van Holten-Verzantvoort A. T., Zwinderman A. H., Aaronson N. K., Hermans J., van Emmerik B., van Dam F. S., van den Bos B., Bijvoet O. L., Cleton F. J. The effect of supportive pamidronate treatment on aspects of quality of life of patients with advanced breast cancer. Eur J Cancer. 1991;27(5):544–549. doi: 10.1016/0277-5379(91)90212-v. [DOI] [PubMed] [Google Scholar]
  37. van der Pluijm G., Binderup L., Bramm E., van der Wee-Pals L., De Groot H., Binderup E., Löwik C., Papapoulos S. Disodium 1-hydroxy-3-(1-pyrrolidinyl)-propylidene-1,1-bisphosphonate (EB-1053) is a potent inhibitor of bone resorption in vitro and in vivo. J Bone Miner Res. 1992 Aug;7(8):981–986. doi: 10.1002/jbmr.5650070815. [DOI] [PubMed] [Google Scholar]
  38. van der Pluijm G., Mouthaan H., Baas C., de Groot H., Papapoulos S., Löwik C. Integrins and osteoclastic resorption in three bone organ cultures: differential sensitivity to synthetic Arg-Gly-Asp peptides during osteoclast formation. J Bone Miner Res. 1994 Jul;9(7):1021–1028. doi: 10.1002/jbmr.5650090709. [DOI] [PubMed] [Google Scholar]
  39. van der Pluijm G., Vloedgraven H. J., Ivanov B., Robey F. A., Grzesik W. J., Robey P. G., Papapoulos S. E., Lowik C. W. Bone sialoprotein peptides are potent inhibitors of breast cancer cell adhesion to bone. Cancer Res. 1996 Apr 15;56(8):1948–1955. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES