Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Aug 1;98(3):777–784. doi: 10.1172/JCI118850

Estradiol-dependent uterine leiomyomas in transgenic mice.

B Romagnolo 1, T Molina 1, G Leroy 1, C Blin 1, A Porteux 1, M Thomasset 1, A Vandewalle 1, A Kahn 1, C Perret 1
PMCID: PMC507488  PMID: 8698870

Abstract

Uterine leiomyomas are a major health problem for women of reproductive age. The molecular biology of these tumors is poorly understood partly because of the lack of relevant animal models. We have produced transgenic mice expressing the simian virus 40 T antigen driven by the promoter of the Calbindin-D9K (CaBP9K) gene and either -1,000 or -117 bp of regulatory sequences so as to establish in vivo, uterine smooth muscle tumor models. Six transgenic mouse lines were obtained. Leiomyomas developed in all of them, with an almost complete penetrance of the phenotype. The smooth muscle tumors arose in different parts of the female reproductive tract. Leiomyomas usually developed in the corpus of the uterus, but one mouse line developed leiomyomas in the horn of the uterus, and another in the vagina. The CaBP9K regulatory sequences directing the expression of the Tag gene possess an estradiol responsive element, and accordingly, development of the tumors was strictly under the control of estrogen. Expression of the Tag gene is not only necessary for the initiation of the tumor but also for its development and maintenance. These transgenic mouse models should be useful for studying the pathobiology of uterine leiomyomas and could be instrumental in designing new therapeutic approaches to this disease.

Full Text

The Full Text of this article is available as a PDF (554.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. M., Cory S. Transgenic models of tumor development. Science. 1991 Nov 22;254(5035):1161–1167. doi: 10.1126/science.1957168. [DOI] [PubMed] [Google Scholar]
  2. Andreassen A., Oyjord T., Hovig E., Holm R., Flørenes V. A., Nesland J. M., Myklebost O., Høie J., Bruland O. S., Børresen A. L. p53 abnormalities in different subtypes of human sarcomas. Cancer Res. 1993 Feb 1;53(3):468–471. [PubMed] [Google Scholar]
  3. Andres A. C., van der Valk M. A., Schönenberger C. A., Flückiger F., LeMeur M., Gerlinger P., Groner B. Ha-ras and c-myc oncogene expression interferes with morphological and functional differentiation of mammary epithelial cells in single and double transgenic mice. Genes Dev. 1988 Nov;2(11):1486–1495. doi: 10.1101/gad.2.11.1486. [DOI] [PubMed] [Google Scholar]
  4. Blin C., L'Horset F., Romagnolo B., Colnot S., Lambert M., Thomasset M., Kahn A., Vandewalle A., Perret C. Functional and growth properties of a myometrial cell line derived from transgenic mice: effects of estradiol and antiestrogens. Endocrinology. 1996 Jun;137(6):2246–2253. doi: 10.1210/endo.137.6.8641172. [DOI] [PubMed] [Google Scholar]
  5. Bruns M. E., Overpeck J. G., Smith G. C., Hirsch G. N., Mills S. E., Bruns D. E. Vitamin D-dependent calcium binding protein in rat uterus: differential effects of estrogen, tamoxifen, progesterone, and pregnancy on accumulation and cellular localization. Endocrinology. 1988 Jun;122(6):2371–2378. doi: 10.1210/endo-122-6-2371. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Clarke R., Skaar T., Baumann K., Leonessa F., James M., Lippman J., Thompson E. W., Freter C., Brunner N. Hormonal carcinogenesis in breast cancer: cellular and molecular studies of malignant progression. Breast Cancer Res Treat. 1994;31(2-3):237–248. doi: 10.1007/BF00666157. [DOI] [PubMed] [Google Scholar]
  8. Cross M., Dexter T. M. Growth factors in development, transformation, and tumorigenesis. Cell. 1991 Jan 25;64(2):271–280. doi: 10.1016/0092-8674(91)90638-f. [DOI] [PubMed] [Google Scholar]
  9. Cuif M. H., Cognet M., Boquet D., Tremp G., Kahn A., Vaulont S. Elements responsible for hormonal control and tissue specificity of L-type pyruvate kinase gene expression in transgenic mice. Mol Cell Biol. 1992 Nov;12(11):4852–4861. doi: 10.1128/mcb.12.11.4852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Delorme A. C., Danan J. L., Acker M. G., Ripoche M. A., Mathieu H. In rat uterus 17 beta-estradiol stimulates a calcium-binding protein similar to the duodenal vitamin D-dependent calcium-binding protein. Endocrinology. 1983 Oct;113(4):1340–1347. doi: 10.1210/endo-113-4-1340. [DOI] [PubMed] [Google Scholar]
  11. Dupret J. M., L'Horset F., Perret C., Bernaudin J. F., Thomasset M. Calbindin-D9K gene expression in the lung of the rat. Absence of regulation by 1,25-dihydroxyvitamin D3 and estrogen. Endocrinology. 1992 Dec;131(6):2643–2648. doi: 10.1210/endo.131.6.1446606. [DOI] [PubMed] [Google Scholar]
  12. Everitt J. I., Wolf D. C., Howe S. R., Goldsworthy T. L., Walker C. Rodent model of reproductive tract leiomyomata. Clinical and pathological features. Am J Pathol. 1995 Jun;146(6):1556–1567. [PMC free article] [PubMed] [Google Scholar]
  13. Fanning E., Knippers R. Structure and function of simian virus 40 large tumor antigen. Annu Rev Biochem. 1992;61:55–85. doi: 10.1146/annurev.bi.61.070192.000415. [DOI] [PubMed] [Google Scholar]
  14. Field K. J., Griffith J. W., Lang C. M. Spontaneous reproductive tract leiomyomas in aged guinea-pigs. J Comp Pathol. 1989 Oct;101(3):287–294. doi: 10.1016/0021-9975(89)90038-8. [DOI] [PubMed] [Google Scholar]
  15. Fotiou S. K., Tserkezoglou A. J., Mahera H., Konstandinidou A. E., Agnantis N. J., Pandis N., Bardi G. Chromosome aberrations and expression of ras and myc oncogenes in leiomyomas and a leiomyosarcoma of the uterus. Eur J Gynaecol Oncol. 1992;13(4):340–345. [PubMed] [Google Scholar]
  16. Fowlis D. J., Balmain A. Oncogenes and tumour suppressor genes in transgenic mouse models of neoplasia. Eur J Cancer. 1993;29A(4):638–645. doi: 10.1016/s0959-8049(05)80170-4. [DOI] [PubMed] [Google Scholar]
  17. Friend S. H., Horowitz J. M., Gerber M. R., Wang X. F., Bogenmann E., Li F. P., Weinberg R. A. Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9059–9063. doi: 10.1073/pnas.84.24.9059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hanahan D. Transgenic mice as probes into complex systems. Science. 1989 Dec 8;246(4935):1265–1275. doi: 10.1126/science.2686032. [DOI] [PubMed] [Google Scholar]
  19. Hashimoto K., Azuma C., Kamiura S., Kimura T., Nobunaga T., Kanai T., Sawada M., Noguchi S., Saji F. Clonal determination of uterine leiomyomas by analyzing differential inactivation of the X-chromosome-linked phosphoglycerokinase gene. Gynecol Obstet Invest. 1995;40(3):204–208. doi: 10.1159/000292336. [DOI] [PubMed] [Google Scholar]
  20. Kato S., Endoh H., Masuhiro Y., Kitamoto T., Uchiyama S., Sasaki H., Masushige S., Gotoh Y., Nishida E., Kawashima H. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995 Dec 1;270(5241):1491–1494. doi: 10.1126/science.270.5241.1491. [DOI] [PubMed] [Google Scholar]
  21. L'Horset F., Blin C., Brehier A., Thomasset M., Perret C. Estrogen-induced calbindin-D 9k gene expression in the rat uterus during the estrous cycle: late antagonistic effect of progesterone. Endocrinology. 1993 Feb;132(2):489–495. doi: 10.1210/endo.132.2.8425470. [DOI] [PubMed] [Google Scholar]
  22. L'Horset F., Blin C., Colnot S., Lambert M., Thomasset M., Perret C. Calbindin-D9k gene expression in the uterus: study of the two messenger ribonucleic acid species and analysis of an imperfect estrogen-responsive element. Endocrinology. 1994 Jan;134(1):11–18. doi: 10.1210/endo.134.1.7506202. [DOI] [PubMed] [Google Scholar]
  23. L'Horset F., Perret C., Brehier A., Thomasset M. 17 beta-estradiol stimulates the calbindin-D9k (CaBP9k) gene expression at the transcriptional and posttranscriptional levels in the rat uterus. Endocrinology. 1990 Dec;127(6):2891–2897. doi: 10.1210/endo-127-6-2891. [DOI] [PubMed] [Google Scholar]
  24. Leach F. S., Tokino T., Meltzer P., Burrell M., Oliner J. D., Smith S., Hill D. E., Sidransky D., Kinzler K. W., Vogelstein B. p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 1993 May 15;53(10 Suppl):2231–2234. [PubMed] [Google Scholar]
  25. Li H., Christakos S. Differential regulation by 1,25-dihydroxyvitamin D3 of calbindin-D9k and calbindin-D28k gene expression in mouse kidney. Endocrinology. 1991 Jun;128(6):2844–2852. doi: 10.1210/endo-128-6-2844. [DOI] [PubMed] [Google Scholar]
  26. Matsui Y., Halter S. A., Holt J. T., Hogan B. L., Coffey R. J. Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice. Cell. 1990 Jun 15;61(6):1147–1155. doi: 10.1016/0092-8674(90)90077-r. [DOI] [PubMed] [Google Scholar]
  27. Oliner J. D., Kinzler K. W., Meltzer P. S., George D. L., Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992 Jul 2;358(6381):80–83. doi: 10.1038/358080a0. [DOI] [PubMed] [Google Scholar]
  28. Perret C., Desplan C., Thomasset M. Cholecalcin (a 9-kDa cholecalciferol-induced calcium-binding protein) messenger RNA. Distribution and induction by calcitriol in the rat digestive tract. Eur J Biochem. 1985 Jul 1;150(1):211–217. doi: 10.1111/j.1432-1033.1985.tb09009.x. [DOI] [PubMed] [Google Scholar]
  29. Perret C., Lomri N., Gouhier N., Auffray C., Thomasset M. The rat vitamin-D-dependent calcium-binding protein (9-kDa CaBP) gene. Complete nucleotide sequence and structural organization. Eur J Biochem. 1988 Feb 15;172(1):43–51. doi: 10.1111/j.1432-1033.1988.tb13853.x. [DOI] [PubMed] [Google Scholar]
  30. Pietras R. J., Arboleda J., Reese D. M., Wongvipat N., Pegram M. D., Ramos L., Gorman C. M., Parker M. G., Sliwkowski M. X., Slamon D. J. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 1995 Jun 15;10(12):2435–2446. [PubMed] [Google Scholar]
  31. Schreiner D. S., Jande S. S., Parkes C. O., Lawson D. E., Thomasset M. Immunocytochemical demonstration of two vitamin D-dependent calcium-binding proteins in mammalian kidney. Acta Anat (Basel) 1983;117(1):1–14. doi: 10.1159/000145765. [DOI] [PubMed] [Google Scholar]
  32. Sinn E., Muller W., Pattengale P., Tepler I., Wallace R., Leder P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell. 1987 May 22;49(4):465–475. doi: 10.1016/0092-8674(87)90449-1. [DOI] [PubMed] [Google Scholar]
  33. Tsukamoto A. S., Grosschedl R., Guzman R. C., Parslow T., Varmus H. E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell. 1988 Nov 18;55(4):619–625. doi: 10.1016/0092-8674(88)90220-6. [DOI] [PubMed] [Google Scholar]
  34. Warembourg M., Perret C., Thomasset M. Distribution of vitamin D-dependent calcium-binding protein messenger ribonucleic acid in rat placenta and duodenum. Endocrinology. 1986 Jul;119(1):176–184. doi: 10.1210/endo-119-1-176. [DOI] [PubMed] [Google Scholar]
  35. Williams B. O., Remington L., Albert D. M., Mukai S., Bronson R. T., Jacks T. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet. 1994 Aug;7(4):480–484. doi: 10.1038/ng0894-480. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES