Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Aug 1;98(3):793–799. doi: 10.1172/JCI118852

No tolerance to peripheral morphine analgesia in presence of opioid expression in inflamed synovia.

C Stein 1, M Pflüger 1, A Yassouridis 1, J Hoelzl 1, K Lehrberger 1, C Welte 1, A H Hassan 1
PMCID: PMC507490  PMID: 8698872

Abstract

Pain treatment with centrally acting opiates is limited by tolerance. Tolerance is a decreasing effect of a drug with prolonged administration of that drug or of a related (e.g., endogenous) compound acting at the same receptor. This is often associated with a downregulation of receptors. In peripheral inflamed tissue, both locally expressed opioid peptides and morphine can produce powerful analgesia mediated by similar populations of opioid receptors. We hypothesized that the chronic presence of endogenous opioids in inflamed joints might convey downregulation of peripheral opioid receptors and tolerance to the analgesic effects of intraarticular morphine. We assessed these effects after arthroscopic surgery in patients with and without histologically verified synovial cellular infiltration, and we examined synovial opioid peptides and opioid receptors by immunocytochemistry and autoradiography, respectively. We found that, despite an abundance of opioid-containing cells in pronounced synovitis, morphine is at least as effective as in patients without such cellular infiltrations, and there is no major downregulation of peripheral opioid receptors. Thus, opioids expressed in inflamed tissue do not produce tolerance to peripheral morphine analgesia. Tolerance may be less pronounced for peripherally than for centrally acting opioids, which provides a promising perspective for the treatment of chronic pain in arthritis and other inflammatory conditions.

Full Text

The Full Text of this article is available as a PDF (395.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonijevic I., Mousa S. A., Schäfer M., Stein C. Perineurial defect and peripheral opioid analgesia in inflammation. J Neurosci. 1995 Jan;15(1 Pt 1):165–172. doi: 10.1523/JNEUROSCI.15-01-00165.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attali B., Vogel Z. Long-term opiate exposure leads to reduction of the alpha i-1 subunit of GTP-binding proteins. J Neurochem. 1989 Nov;53(5):1636–1639. doi: 10.1111/j.1471-4159.1989.tb08562.x. [DOI] [PubMed] [Google Scholar]
  3. Barber A., Gottschlich R. Opioid agonists and antagonists: an evaluation of their peripheral actions in inflammation. Med Res Rev. 1992 Sep;12(5):525–562. doi: 10.1002/med.2610120505. [DOI] [PubMed] [Google Scholar]
  4. Bousselmame R., Eustache M., Michael-Titus A., Costentin J. Chronic inhibition of enkephalinase induces changes in the antinociceptive and locomotor effects of the enkephalinase inhibitor acetorphan in rats. Neuropharmacology. 1991 Aug;30(8):865–870. doi: 10.1016/0028-3908(91)90120-z. [DOI] [PubMed] [Google Scholar]
  5. Chapman C. R., Casey K. L., Dubner R., Foley K. M., Gracely R. H., Reading A. E. Pain measurement: an overview. Pain. 1985 May;22(1):1–31. doi: 10.1016/0304-3959(85)90145-9. [DOI] [PubMed] [Google Scholar]
  6. Charlton E. Ethical guidelines for pain research in humans. Committee on Ethical Issues of the International Association for the Study of Pain. Pain. 1995 Dec;63(3):277–278. doi: 10.1016/0304-3959(95)90040-3. [DOI] [PubMed] [Google Scholar]
  7. Duman R. S., Tallman J. F., Nestler E. J. Acute and chronic opiate-regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J Pharmacol Exp Ther. 1988 Sep;246(3):1033–1039. [PubMed] [Google Scholar]
  8. Griffin M. T., Law P. Y., Loh H. H. Involvement of both inhibitory and stimulatory guanine nucleotide binding proteins in the expression of chronic opiate regulation of adenylate cyclase activity in NG108-15 cells. J Neurochem. 1985 Nov;45(5):1585–1589. doi: 10.1111/j.1471-4159.1985.tb07230.x. [DOI] [PubMed] [Google Scholar]
  9. Hassan A. H., Ableitner A., Stein C., Herz A. Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience. 1993 Jul;55(1):185–195. doi: 10.1016/0306-4522(93)90465-r. [DOI] [PubMed] [Google Scholar]
  10. Jeanjean A. P., Maloteaux J. M., Laduron P. M. IL-1 beta-like Freund's adjuvant enhances axonal transport of opiate receptors in sensory neurons. Neurosci Lett. 1994 Aug 15;177(1-2):75–78. doi: 10.1016/0304-3940(94)90048-5. [DOI] [PubMed] [Google Scholar]
  11. Johnson S. M., Fleming W. W. Mechanisms of cellular adaptive sensitivity changes: applications to opioid tolerance and dependence. Pharmacol Rev. 1989 Dec;41(4):435–488. [PubMed] [Google Scholar]
  12. Melzack R. The McGill Pain Questionnaire: major properties and scoring methods. Pain. 1975 Sep;1(3):277–299. doi: 10.1016/0304-3959(75)90044-5. [DOI] [PubMed] [Google Scholar]
  13. Miczek K. A., Thompson M. L., Shuster L. Opioid-like analgesia in defeated mice. Science. 1982 Mar 19;215(4539):1520–1522. doi: 10.1126/science.7199758. [DOI] [PubMed] [Google Scholar]
  14. Morris B. J. Control of receptor sensitivity at the mRNA level. Mol Neurobiol. 1993 Fall-Winter;7(3-4):189–205. doi: 10.1007/BF02769175. [DOI] [PubMed] [Google Scholar]
  15. Przewłocki R., Hassan A. H., Lason W., Epplen C., Herz A., Stein C. Gene expression and localization of opioid peptides in immune cells of inflamed tissue: functional role in antinociception. Neuroscience. 1992;48(2):491–500. doi: 10.1016/0306-4522(92)90509-z. [DOI] [PubMed] [Google Scholar]
  16. Puttfarcken P. S., Werling L. L., Cox B. M. Effects of chronic morphine exposure on opioid inhibition of adenylyl cyclase in 7315c cell membranes: a useful model for the study of tolerance at mu opioid receptors. Mol Pharmacol. 1988 May;33(5):520–527. [PubMed] [Google Scholar]
  17. Rasenick M. M., Childers S. R. Modification of Gs-stimulated adenylate cyclase in brain membranes by low pH pretreatment: correlation with altered guanine nucleotide exchange. J Neurochem. 1989 Jul;53(1):219–225. doi: 10.1111/j.1471-4159.1989.tb07317.x. [DOI] [PubMed] [Google Scholar]
  18. Schäfer M., Carter L., Stein C. Interleukin 1 beta and corticotropin-releasing factor inhibit pain by releasing opioids from immune cells in inflamed tissue. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4219–4223. doi: 10.1073/pnas.91.10.4219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schäfer M., Imai Y., Uhl G. R., Stein C. Inflammation enhances peripheral mu-opioid receptor-mediated analgesia, but not mu-opioid receptor transcription in dorsal root ganglia. Eur J Pharmacol. 1995 Jun 12;279(2-3):165–169. doi: 10.1016/0014-2999(95)00150-j. [DOI] [PubMed] [Google Scholar]
  20. Selley D. E., Breivogel C. S., Childers S. R. Modification of G protein-coupled functions by low-pH pretreatment of membranes from NG108-15 cells: increase in opioid agonist efficacy by decreased inactivation of G proteins. Mol Pharmacol. 1993 Oct;44(4):731–741. [PubMed] [Google Scholar]
  21. Sharma S. K., Klee W. A., Nirenberg M. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3092–3096. doi: 10.1073/pnas.72.8.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stein C., Comisel K., Haimerl E., Yassouridis A., Lehrberger K., Herz A., Peter K. Analgesic effect of intraarticular morphine after arthroscopic knee surgery. N Engl J Med. 1991 Oct 17;325(16):1123–1126. doi: 10.1056/NEJM199110173251602. [DOI] [PubMed] [Google Scholar]
  23. Stein C., Gramsch C., Herz A. Intrinsic mechanisms of antinociception in inflammation: local opioid receptors and beta-endorphin. J Neurosci. 1990 Apr;10(4):1292–1298. doi: 10.1523/JNEUROSCI.10-04-01292.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stein C., Hassan A. H., Lehrberger K., Giefing J., Yassouridis A. Local analgesic effect of endogenous opioid peptides. Lancet. 1993 Aug 7;342(8867):321–324. doi: 10.1016/0140-6736(93)91471-w. [DOI] [PubMed] [Google Scholar]
  25. Stein C., Hassan A. H., Przewłocki R., Gramsch C., Peter K., Herz A. Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5935–5939. doi: 10.1073/pnas.87.15.5935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stein C., Mendl G. The German counterpart to McGill Pain Questionnaire. Pain. 1988 Feb;32(2):251–255. doi: 10.1016/0304-3959(88)90074-7. [DOI] [PubMed] [Google Scholar]
  27. Stein C. Peripheral mechanisms of opioid analgesia. Anesth Analg. 1993 Jan;76(1):182–191. doi: 10.1213/00000539-199301000-00031. [DOI] [PubMed] [Google Scholar]
  28. Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med. 1995 Jun 22;332(25):1685–1690. doi: 10.1056/NEJM199506223322506. [DOI] [PubMed] [Google Scholar]
  29. Terman G. W., Shavit Y., Lewis J. W., Cannon J. T., Liebeskind J. C. Intrinsic mechanisms of pain inhibition: activation by stress. Science. 1984 Dec 14;226(4680):1270–1277. doi: 10.1126/science.6505691. [DOI] [PubMed] [Google Scholar]
  30. Werling L. L., McMahon P. N., Cox B. M. Selective changes in mu opioid receptor properties induced by chronic morphine exposure. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6393–6397. doi: 10.1073/pnas.86.16.6393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu H. H., Wilcox G. L., McLoon S. C. Implantation of AtT-20 or genetically modified AtT-20/hENK cells in mouse spinal cord induced antinociception and opioid tolerance. J Neurosci. 1994 Aug;14(8):4806–4814. doi: 10.1523/JNEUROSCI.14-08-04806.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES