Abstract
Left ventricular hypertrophy (LVH) produced by aortic valve plication leads to increased myocardial cyclic GMP. We tested whether this was a result of increased soluble guanylate cyclase activity or nitric oxide (NO) synthase and its functional consequences. We used the nitric oxide donor 3-morpholino-sydnonimine (SIN-1) or the NO synthase inhibitor NG-nitro-l-arginine methyl ester (L-NAME) in 12 control and 12 LVH anesthetized open-chest mongrel dogs. L-NAME (6 mg/kg) or SIN-1 (1 microgram/kg per min) was infused into the left anterior descending coronary artery and regional segment work and cyclic GMP levels were determined. In vitro myocardial guanylate cyclase sensitivity (0.43 +/- 0.04 to 0.28 +/- 0.04 mM [EC50]) and maximal activity (10.1 +/- 2.9 to 25.5 +/- 6.5 pmol/mg protein per min) were significantly increased in LVH as compared with control animals in response to nitroprusside stimulation, but cyclic GMP-phosphodiesterase activity was similar. In LVH dogs, basal cyclic GMP was significantly elevated in vivo when compared with controls. Treatment of dogs with SIN-1 resulted in a significant increase in cyclic GMP in control (1.09 +/- 0.12 to 1.48 +/- 0.19 pmol/gram) and a greater increase in the LVH group (1.78 +/- 0.16 to 3.58 +/- 0.71 pmol/g). L-NAME had no effect on myocardial cyclic GMP levels in control or LVH dogs. Segment work decreased in the control group after SIN-1 (1,573 +/- 290 to 855 +/- 211 grams x mm/min). LVH dogs showed no decrement in work as a result of treatment with SIN-1. L-NAME did not cause significant changes in myocardial cyclic GMP, O2 consumption, or work in either control or LVH dogs, but vascular effects were evident. SIN-1 increased cyclic GMP, and with greater effect on LVH; however, this resulted in a decrement in function only in the control group. The greater increased cyclic GMP in LVH dogs is not related to increased NO production, but is related to significantly higher sensitivity and maximal activity of soluble myocardial guanylate cyclase.
Full Text
The Full Text of this article is available as a PDF (229.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brady A. J., Warren J. B., Poole-Wilson P. A., Williams T. J., Harding S. E. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol. 1993 Jul;265(1 Pt 2):H176–H182. doi: 10.1152/ajpheart.1993.265.1.H176. [DOI] [PubMed] [Google Scholar]
- Brown L. A., Nunez D. J., Wilkins M. R. Differential regulation of natriuretic peptide receptor messenger RNAs during the development of cardiac hypertrophy in the rat. J Clin Invest. 1993 Dec;92(6):2702–2712. doi: 10.1172/JCI116887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calderone A., Bouvier M., Li K., Juneau C., de Champlain J., Rouleau J. L. Dysfunction of the beta- and alpha-adrenergic systems in a model of congestive heart failure. The pacing-overdrive dog. Circ Res. 1991 Aug;69(2):332–343. doi: 10.1161/01.res.69.2.332. [DOI] [PubMed] [Google Scholar]
- Dowell R. T., Haithcoat J. L., Thirkill H. M., Palmer W. K. Heart cyclic nucleotide responses to sustained aortic constriction in neonatal and adult rats. Am J Physiol. 1984 Feb;246(2 Pt 2):H197–H206. doi: 10.1152/ajpheart.1984.246.2.H197. [DOI] [PubMed] [Google Scholar]
- Grocott-Mason R., Anning P., Evans H., Lewis M. J., Shah A. M. Modulation of left ventricular relaxation in isolated ejecting heart by endogenous nitric oxide. Am J Physiol. 1994 Nov;267(5 Pt 2):H1804–H1813. doi: 10.1152/ajpheart.1994.267.5.H1804. [DOI] [PubMed] [Google Scholar]
- Gurevicius J., Salem M. R., Metwally A. A., Silver J. M., Crystal G. J. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis. Am J Physiol. 1995 Jan;268(1 Pt 2):H39–H47. doi: 10.1152/ajpheart.1995.268.1.H39. [DOI] [PubMed] [Google Scholar]
- Jakob G., Mair J., Pichler M., Puschendorf B. Ergometric exercise testing and sensitivity of cyclic guanosine 3',5'-monophosphate (cGMP) in diagnosing asymptomatic left ventricular dysfunction. Br Heart J. 1995 Feb;73(2):145–150. doi: 10.1136/hrt.73.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelm M., Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res. 1990 Jun;66(6):1561–1575. doi: 10.1161/01.res.66.6.1561. [DOI] [PubMed] [Google Scholar]
- Kimura H., Mittal C. K., Murad F. Activation of guanylate cyclase from rat liver and other tissues by sodium azide. J Biol Chem. 1975 Oct 25;250(20):8016–8022. [PubMed] [Google Scholar]
- Kirkebøen K. A., Naess P. A., Offstad J., Ilebekk A. Effects of regional inhibition of nitric oxide synthesis in intact porcine hearts. Am J Physiol. 1994 Apr;266(4 Pt 2):H1516–H1527. doi: 10.1152/ajpheart.1994.266.4.H1516. [DOI] [PubMed] [Google Scholar]
- Legato M. J. Cellular mechanisms of normal growth in the mammalian heart. I. Qualitative and quantitative features of ventricular architecture in the dog from birth to five months of age. Circ Res. 1979 Feb;44(2):250–262. doi: 10.1161/01.res.44.2.250. [DOI] [PubMed] [Google Scholar]
- Lohmann S. M., Fischmeister R., Walter U. Signal transduction by cGMP in heart. Basic Res Cardiol. 1991 Nov-Dec;86(6):503–514. doi: 10.1007/BF02190700. [DOI] [PubMed] [Google Scholar]
- Marczin N., Ryan U. S., Catravas J. D. Methylene blue inhibits nitrovasodilator- and endothelium-derived relaxing factor-induced cyclic GMP accumulation in cultured pulmonary arterial smooth muscle cells via generation of superoxide anion. J Pharmacol Exp Ther. 1992 Oct;263(1):170–179. [PubMed] [Google Scholar]
- Michel J. B., Mercadier J. J., Galen F. X., Urbain R., Dussaule J. C., Philippe M., Corvol P. Urinary cyclic guanosine monophosphate as an indicator of experimental congestive heart failure in rats. Cardiovasc Res. 1990 Nov;24(11):946–952. doi: 10.1093/cvr/24.11.946. [DOI] [PubMed] [Google Scholar]
- Nichols J. R., Gonzalez N. C. Increase in myocardial cell cGMP concentration in pressure-induced myocardial hypertrophy. J Mol Cell Cardiol. 1982 Mar;14(3):181–183. doi: 10.1016/0022-2828(82)90117-1. [DOI] [PubMed] [Google Scholar]
- Paulus W. J. Endothelial control of vascular and myocardial function in heart failure. Cardiovasc Drugs Ther. 1994 Jun;8(3):437–446. doi: 10.1007/BF00877920. [DOI] [PubMed] [Google Scholar]
- Paulus W. J., Vantrimpont P. J., Shah A. M. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation. 1994 May;89(5):2070–2078. doi: 10.1161/01.cir.89.5.2070. [DOI] [PubMed] [Google Scholar]
- Roitstein A., Kedem J., Cheinberg B., Weiss H. R., Tse J., Scholz P. M. The effect of intracoronary nitroprusside on cyclic GMP and regional mechanics is altered in a canine model of left ventricular hypertrophy. J Surg Res. 1994 Nov;57(5):584–590. doi: 10.1006/jsre.1994.1187. [DOI] [PubMed] [Google Scholar]
- Schini V. B., Vanhoutte P. M. Role of the L-arginine-nitric oxide pathway in vascular smooth muscle. Eur Heart J. 1993 Nov;14 (Suppl 1):16–21. [PubMed] [Google Scholar]
- Scholz P. M., Chiu W. C., Kedem J., Weiss H. R. Relationship between cyclic-AMP content, regional myocardial function and O2 consumption in experimental left ventricular hypertrophy: effect of negative inotropes. Life Sci. 1993;53(24):1847–1858. doi: 10.1016/0024-3205(93)90492-l. [DOI] [PubMed] [Google Scholar]
- Scholz P. M., Grover G. J., Mackenzie J. W., Weiss H. R. Regional oxygen supply and consumption balance in experimental left ventricular hypertrophy. Basic Res Cardiol. 1990 Nov-Dec;85(6):575–584. doi: 10.1007/BF01907892. [DOI] [PubMed] [Google Scholar]
- Scholz P. M., Upsher M. E., Eliades D., Kedem J., Weiss H. R. Alterations in the regional beta adrenergic system in experimental left ventricular hypertrophy. Cardiovasc Res. 1990 Jan;24(1):65–71. doi: 10.1093/cvr/24.1.65. [DOI] [PubMed] [Google Scholar]
- Shah A. M., Lewis M. J. Endothelial modulation of myocardial contraction: mechanisms and potential relevance in cardiac disease. Basic Res Cardiol. 1992;87 (Suppl 2):59–70. doi: 10.1007/978-3-642-72477-0_6. [DOI] [PubMed] [Google Scholar]
- Shah A. M., Spurgeon H. A., Sollott S. J., Talo A., Lakatta E. G. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res. 1994 May;74(5):970–978. doi: 10.1161/01.res.74.5.970. [DOI] [PubMed] [Google Scholar]
- Smith T. P., Jr, Canty J. M., Jr Modulation of coronary autoregulatory responses by nitric oxide. Evidence for flow-dependent resistance adjustments in conscious dogs. Circ Res. 1993 Aug;73(2):232–240. doi: 10.1161/01.res.73.2.232. [DOI] [PubMed] [Google Scholar]
- Sperelakis N., Tohse N., Ohya Y., Masuda H. Cyclic GMP regulation of calcium slow channels in cardiac muscle and vascular smooth muscle cells. Adv Pharmacol. 1994;26:217–252. doi: 10.1016/s1054-3589(08)60056-3. [DOI] [PubMed] [Google Scholar]
- Thompson E. W. Quantitative analysis of myocardial structure in insulin-dependent diabetes mellitus: effects of immediate and delayed insulin replacement. Proc Soc Exp Biol Med. 1994 Apr;205(4):294–305. doi: 10.3181/00379727-205-43710. [DOI] [PubMed] [Google Scholar]
- Tse J., Wrenn R. W., Kuo J. F. Thyroxine-induced changes in characteristics and activities of beta-adrenergic receptors and adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate systems in the heart may be related to reputed catecholamine supersensitivity in hyperthyroidism. Endocrinology. 1980 Jul;107(1):6–16. doi: 10.1210/endo-107-1-6. [DOI] [PubMed] [Google Scholar]
- Vatner D. E., Lee D. L., Schwarz K. R., Longabaugh J. P., Fujii A. M., Vatner S. F., Homcy C. J. Impaired cardiac muscarinic receptor function in dogs with heart failure. J Clin Invest. 1988 Jun;81(6):1836–1842. doi: 10.1172/JCI113528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahler G. M., Dollinger S. J. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol. 1995 Jan;268(1 Pt 1):C45–C54. doi: 10.1152/ajpcell.1995.268.1.C45. [DOI] [PubMed] [Google Scholar]
- Watanabe A. M., Besch H. R., Jr Interaction between cyclic adenosine monophosphate and cyclic gunaosine monophosphate in guinea pig ventricular myocardium. Circ Res. 1975 Sep;37(3):309–317. doi: 10.1161/01.res.37.3.309. [DOI] [PubMed] [Google Scholar]
- Weiss H. R., Rodriguez E., Tse J. Relationship between cGMP and myocardial O2 consumption is altered in T4-induced cardiac hypertrophy. Am J Physiol. 1995 Feb;268(2 Pt 2):H686–H691. doi: 10.1152/ajpheart.1995.268.2.H686. [DOI] [PubMed] [Google Scholar]
- Weiss H. R., Rodriguez E., Tse J., Scholz P. M. Effect of increased myocardial cyclic GMP induced by cyclic GMP-phosphodiesterase inhibition on oxygen consumption and supply of rabbit hearts. Clin Exp Pharmacol Physiol. 1994 Aug;21(8):607–614. doi: 10.1111/j.1440-1681.1994.tb02561.x. [DOI] [PubMed] [Google Scholar]
- Wilkins M. R., Needleman P. Effect of pharmacological manipulation of endogenous atriopeptin activity on renal function. Am J Physiol. 1992 Feb;262(2 Pt 2):F161–F167. doi: 10.1152/ajprenal.1992.262.2.F161. [DOI] [PubMed] [Google Scholar]
