Abstract
We have generated transgenic mice over-expressing human apolipoprotein CI (apo CI) using the native gene joined to the downstream 154-bp liver-specific enhancer that we defined for apo E. Human apo CI (HuCI)-transgenic mice showed elevation of plasma triglycerides (mg/dl) compared to controls in both the fasted (211 +/- 81 vs 123 +/- 52, P = 0.0001) and fed (265 +/- 105 vs 146 +/- 68, P < 0.0001) states. Unlike the human apo CII (HuCII)- and apo CIII (HuCIII)-transgenic mouse models of hypertriglyceridemia, plasma cholesterol was disproportionately elevated (95 +/- 23 vs 73 +/- 23, P = 0.002, fasted and 90 +/- 24 vs 61 +/- 14, P < 0.0001, fed). Lipoprotein fractionation showed increased VLDL and IDL + LDL with an increased cholesterol/triglyceride ratio (0.114 vs 0.065, P = 0.02, in VLDL). The VLDL apo E/apo B ratio was decreased 3.4-fold (P = 0.05) and apo CII and apo CIII decreased in proportion to apo E. Triglyceride and apo B production rates were normal, but clearance rates of VLDL triglycerides and postlipolysis lipoprotein "remnants" were significantly slowed. Plasma apo B was significantly elevated. Unlike HuCII- and HuCIII-transgenic mice, VLDL from HuCI transgenic mice bound heparin-Sepharose, a model for cell-surface glycosaminoglycans, normally. In summary, apo CI overexpression is associated with decreased particulate uptake of apo B-containing lipoproteins, leading to increased levels of several potentially atherogenic species, including cholesterol-enriched VLDL, IDL, and LDL.
Full Text
The Full Text of this article is available as a PDF (252.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aalto-Setälä K., Fisher E. A., Chen X., Chajek-Shaul T., Hayek T., Zechner R., Walsh A., Ramakrishnan R., Ginsberg H. N., Breslow J. L. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest. 1992 Nov;90(5):1889–1900. doi: 10.1172/JCI116066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albers J. J., Lin J., Roberts G. P. Effect of human plasma apolipoproteins on the activity of purified lecithin: cholesterol acyltransferase. Artery. 1979 Jan;5(1):61–75. [PubMed] [Google Scholar]
- Attman P. O., Alaupovic P., Gustafson A. Serum apolipoprotein profile of patients with chronic renal failure. Kidney Int. 1987 Sep;32(3):368–375. doi: 10.1038/ki.1987.219. [DOI] [PubMed] [Google Scholar]
- Attman P. O., Alaupovic P. Lipid and apolipoprotein profiles of uremic dyslipoproteinemia--relation to renal function and dialysis. Nephron. 1991;57(4):401–410. doi: 10.1159/000186303. [DOI] [PubMed] [Google Scholar]
- Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
- Brown W. V., Baginsky M. L. Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun. 1972 Jan 31;46(2):375–382. doi: 10.1016/s0006-291x(72)80149-9. [DOI] [PubMed] [Google Scholar]
- Brown W. V., Levy R. I., Fredrickson D. S. Further characterization of apolipoproteins from the human plasma very low density lipoproteins. J Biol Chem. 1970 Dec 25;245(24):6588–6594. [PubMed] [Google Scholar]
- Brown W. V., Levy R. I., Fredrickson D. S. Studies of the proteins in human plasma very low density lipoproteins. J Biol Chem. 1969 Oct 25;244(20):5687–5694. [PubMed] [Google Scholar]
- Carlson L. A., Ballantyne D. Changing relative proportions of apolipoproteins CII and CIII of very low density lipoproteins in hypertriglyceridaemia. Atherosclerosis. 1976 May-Jun;23(3):563–568. doi: 10.1016/0021-9150(76)90016-2. [DOI] [PubMed] [Google Scholar]
- Curry M. D., McConathy W. J., Fesmire J. D., Alaupovic P. Quantitative determination of apolipoproteins C-I and C-II in human plasma by separate electroimmunoassays. Clin Chem. 1981 Apr;27(4):543–548. [PubMed] [Google Scholar]
- Dammerman M., Sandkuijl L. A., Halaas J. L., Chung W., Breslow J. L. An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3' untranslated region polymorphisms. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4562–4566. doi: 10.1073/pnas.90.10.4562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dang Q., Walker D., Taylor S., Allan C., Chin P., Fan J., Taylor J. Structure of the hepatic control region of the human apolipoprotein E/C-I gene locus. J Biol Chem. 1995 Sep 22;270(38):22577–22585. doi: 10.1074/jbc.270.38.22577. [DOI] [PubMed] [Google Scholar]
- Fielding P. E., Fielding C. J. A cholesteryl ester transfer complex in human plasma. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3327–3330. doi: 10.1073/pnas.77.6.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garbers D. L. Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell. 1992 Oct 2;71(1):1–4. doi: 10.1016/0092-8674(92)90258-e. [DOI] [PubMed] [Google Scholar]
- Ginsberg H. N., Le N. A., Gibson J. C. Regulation of the production and catabolism of plasma low density lipoproteins in hypertriglyceridemic subjects. Effect of weight loss. J Clin Invest. 1985 Feb;75(2):614–623. doi: 10.1172/JCI111739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ginsberg H. N., Le N. A., Goldberg I. J., Gibson J. C., Rubinstein A., Wang-Iverson P., Norum R., Brown W. V. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest. 1986 Nov;78(5):1287–1295. doi: 10.1172/JCI112713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glomset J. A., Janssen E. T., Kennedy R., Dobbins J. Role of plasma lecithin:cholesterol acyltransferase in the metabolism of high density lipoproteins. J Lipid Res. 1966 Sep;7(5):638–648. [PubMed] [Google Scholar]
- Grundy S. M. Role of low-density lipoproteins in atherogenesis and development of coronary heart disease. Clin Chem. 1995 Jan;41(1):139–146. [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Havel R. J., Fielding C. J., Olivecrona T., Shore V. G., Fielding P. E., Egelrud T. Cofactor activity of protein components of human very low density lipoproteins in the hydrolysis of triglycerides by lipoproteins lipase from different sources. Biochemistry. 1973 Apr 24;12(9):1828–1833. doi: 10.1021/bi00733a026. [DOI] [PubMed] [Google Scholar]
- Herbert P. N., Shulman R. S., Levy R. I., Fredrickson D. S. Fractionation of the C-apoproteins from human plasma very low density lipoproteins. J Biol Chem. 1973 Jul 25;248(14):4941–4946. [PubMed] [Google Scholar]
- Ito Y., Azrolan N., O'Connell A., Walsh A., Breslow J. L. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science. 1990 Aug 17;249(4970):790–793. doi: 10.1126/science.2167514. [DOI] [PubMed] [Google Scholar]
- Kessling A. M., Nanjee M. N., Miller N. E., Humphries S. E. Variations in the apolipoprotein AI-CIII-AIV gene region and in lecithin:cholesterol acyltransferase concentration are determinants of plasma cholesterol concentrations. Atherosclerosis. 1988 Mar;70(1-2):13–19. doi: 10.1016/0021-9150(88)90095-0. [DOI] [PubMed] [Google Scholar]
- Klasen E. C., Talmud P. J., Havekes L., de Wit E., van der Kooij-Meijs E., Smit M., Hansson G., Humphries S. E. A common restriction fragment length polymorphism of the human apolipoprotein E gene and its relationship to type III hyperlipidaemia. Hum Genet. 1987 Mar;75(3):244–247. doi: 10.1007/BF00281067. [DOI] [PubMed] [Google Scholar]
- Knott T. J., Robertson M. E., Priestley L. M., Urdea M., Wallis S., Scott J. Characterisation of mRNAs encoding the precursor for human apolipoprotein CI. Nucleic Acids Res. 1984 May 11;12(9):3909–3915. doi: 10.1093/nar/12.9.3909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kowal R. C., Herz J., Weisgraber K. H., Mahley R. W., Brown M. S., Goldstein J. L. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem. 1990 Jun 25;265(18):10771–10779. [PubMed] [Google Scholar]
- Kwiterovich P. O., Jr, Motevalli M., Miller M. The effect of three serum basic proteins on the mass of lipids in normal and hyperapoB fibroblasts. Arterioscler Thromb. 1994 Jan;14(1):1–7. doi: 10.1161/01.atv.14.1.1. [DOI] [PubMed] [Google Scholar]
- LaRosa J. C., Levy R. I., Herbert P., Lux S. E., Fredrickson D. S. A specific apoprotein activator for lipoprotein lipase. Biochem Biophys Res Commun. 1970 Oct 9;41(1):57–62. doi: 10.1016/0006-291x(70)90468-7. [DOI] [PubMed] [Google Scholar]
- Le N. A., Gibson J. C., Ginsberg H. N. Independent regulation of plasma apolipoprotein C-II and C-III concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins. J Lipid Res. 1988 May;29(5):669–677. [PubMed] [Google Scholar]
- Linton M. F., Farese R. V., Jr, Chiesa G., Grass D. S., Chin P., Hammer R. E., Hobbs H. H., Young S. G. Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J Clin Invest. 1993 Dec;92(6):3029–3037. doi: 10.1172/JCI116927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeda N., Li H., Lee D., Oliver P., Quarfordt S. H., Osada J. Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem. 1994 Sep 23;269(38):23610–23616. [PubMed] [Google Scholar]
- Mailly F., Tugrul Y., Reymer P. W., Bruin T., Seed M., Groenemeyer B. F., Asplund-Carlson A., Vallance D., Winder A. F., Miller G. J. A common variant in the gene for lipoprotein lipase (Asp9-->Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Arterioscler Thromb Vasc Biol. 1995 Apr;15(4):468–478. doi: 10.1161/01.atv.15.4.468. [DOI] [PubMed] [Google Scholar]
- Nishina P. M., Johnson J. P., Naggert J. K., Krauss R. M. Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):708–712. doi: 10.1073/pnas.89.2.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pagnan A., Havel R. J., Kane J. P., Kotite L. Characterization of human very low density lipoproteins containing two electrophoretic populations: double pre-beta lipoproteinemia and primary dysbetalipoproteinemia. J Lipid Res. 1977 Sep;18(5):613–622. [PubMed] [Google Scholar]
- Paigen B., Morrow A., Brandon C., Mitchell D., Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 1985 Oct;57(1):65–73. doi: 10.1016/0021-9150(85)90138-8. [DOI] [PubMed] [Google Scholar]
- Plump A. S., Breslow J. L. Apolipoprotein E and the apolipoprotein E-deficient mouse. Annu Rev Nutr. 1995;15:495–518. doi: 10.1146/annurev.nu.15.070195.002431. [DOI] [PubMed] [Google Scholar]
- Quarfordt S. H., Michalopoulos G., Schirmer B. The effect of human C apolipoproteins on the in vitro hepatic metabolism of triglyceride emulsions in the rat. J Biol Chem. 1982 Dec 25;257(24):14642–14647. [PubMed] [Google Scholar]
- Reynisdottir S., Eriksson M., Angelin B., Arner P. Impaired activation of adipocyte lipolysis in familial combined hyperlipidemia. J Clin Invest. 1995 May;95(5):2161–2169. doi: 10.1172/JCI117905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sehayek E., Eisenberg S. Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem. 1991 Sep 25;266(27):18259–18267. [PubMed] [Google Scholar]
- Shachter N. S., Hayek T., Leff T., Smith J. D., Rosenberg D. W., Walsh A., Ramakrishnan R., Goldberg I. J., Ginsberg H. N., Breslow J. L. Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice. J Clin Invest. 1994 Apr;93(4):1683–1690. doi: 10.1172/JCI117151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shachter N. S., Zhu Y., Walsh A., Breslow J. L., Smith J. D. Localization of a liver-specific enhancer in the apolipoprotein E/C-I/C-II gene locus. J Lipid Res. 1993 Oct;34(10):1699–1707. [PubMed] [Google Scholar]
- Sijbrands E. J., Westendorp R. G., Hoffer M. J., Havekes L. M., Frants R. R., Meinders A. E., Frölich M., Smelt A. H. Effect of insulin resistance, apoE2 allele, and smoking on combined hyperlipidemia. Arterioscler Thromb. 1994 Oct;14(10):1576–1580. doi: 10.1161/01.atv.14.10.1576. [DOI] [PubMed] [Google Scholar]
- Simonet W. S., Bucay N., Lauer S. J., Taylor J. M. A far-downstream hepatocyte-specific control region directs expression of the linked human apolipoprotein E and C-I genes in transgenic mice. J Biol Chem. 1993 Apr 15;268(11):8221–8229. [PubMed] [Google Scholar]
- Simonet W. S., Bucay N., Pitas R. E., Lauer S. J., Taylor J. M. Multiple tissue-specific elements control the apolipoprotein E/C-I gene locus in transgenic mice. J Biol Chem. 1991 May 15;266(14):8651–8654. [PubMed] [Google Scholar]
- Smit M., van der Kooij-Meijs E., Woudt L. P., Havekes L. M., Frants R. R. Exact localization of the familial dysbetalipoproteinemia associated HpaI restriction site in the promoter region of the APOC1 gene. Biochem Biophys Res Commun. 1988 May 16;152(3):1282–1288. doi: 10.1016/s0006-291x(88)80424-8. [DOI] [PubMed] [Google Scholar]
- Smith J. D., Plump A. S., Hayek T., Walsh A., Breslow J. L. Accumulation of human apolipoprotein E in the plasma of transgenic mice. J Biol Chem. 1990 Sep 5;265(25):14709–14712. [PubMed] [Google Scholar]
- Tybjaerg-Hansen A., Nordestgaard B. G., Gerdes L. U., Faergeman O., Humphries S. E. Genetic markers in the apo AI-CIII-AIV gene cluster for combined hyperlipidemia, hypertriglyceridemia, and predisposition to atherosclerosis. Atherosclerosis. 1993 May;100(2):157–169. doi: 10.1016/0021-9150(93)90202-6. [DOI] [PubMed] [Google Scholar]
- Walsh A., Ito Y., Breslow J. L. High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem. 1989 Apr 15;264(11):6488–6494. [PubMed] [Google Scholar]
- Wang C. S., McConathy W. J., Kloer H. U., Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest. 1985 Feb;75(2):384–390. doi: 10.1172/JCI111711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisgraber K. H., Mahley R. W., Kowal R. C., Herz J., Goldstein J. L., Brown M. S. Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein. J Biol Chem. 1990 Dec 25;265(36):22453–22459. [PubMed] [Google Scholar]
- Windler E. E., Kovanen P. T., Chao Y. S., Brown M. S., Havel R. J., Goldstein J. L. The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that membrane mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem. 1980 Nov 10;255(21):10464–10471. [PubMed] [Google Scholar]
- Windler E., Chao Y., Havel R. J. Regulation of the hepatic uptake of triglyceride-rich lipoproteins in the rat. Opposing effects of homologous apolipoprotein E and individual C apoproteins. J Biol Chem. 1980 Sep 10;255(17):8303–8307. [PubMed] [Google Scholar]
- Windler E., Havel R. J. Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver. J Lipid Res. 1985 May;26(5):556–565. [PubMed] [Google Scholar]
- Woollett L. A., Spady D. K., Dietschy J. M. Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. J Lipid Res. 1992 Jan;33(1):77–88. [PubMed] [Google Scholar]
- de Silva H. V., Lauer S. J., Wang J., Simonet W. S., Weisgraber K. H., Mahley R. W., Taylor J. M. Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem. 1994 Jan 21;269(3):2324–2335. [PubMed] [Google Scholar]
- van Ree J. H., Hofker M. H., van den Broek W. J., van Deursen J. M., van der Boom H., Frants R. R., Wieringa B., Havekes L. M. Increased response to cholesterol feeding in apolipoprotein C1-deficient mice. Biochem J. 1995 Feb 1;305(Pt 3):905–911. doi: 10.1042/bj3050905. [DOI] [PMC free article] [PubMed] [Google Scholar]