Abstract
The hexosamine biosynthetic pathway has been hypothesized to be involved in mediating some of the toxic effects of hyperglycemia. Glutamine:fructose-6-phosphate amidotransferase (GFA), the first and rate limiting enzyme of the hexosamine biosynthetic pathway, was overexpressed in skeletal muscle and adipose tissue of transgenic mice. A 2.4-fold increase of GFA activity in muscle of the transgenic mice led to weight-dependent hyperinsulinemia in random-fed mice. The hyperinsulinemic-euglycemic clamp technique confirmed that transgenic mice develop insulin resistance, with a glucose disposal rate of 68.5 +/- 3.5 compared with 129.4 +/- 9.4 mg/kg per min (P < 0.001) for littermate controls. The decrease in the glucose disposal rate of the transgenic mice is accompanied by decreased protein but not mRNA levels of the insulin-stimulated glucose transporter (GLUT4). These data support the hypothesis that excessive flux through the hexosamine biosynthesis pathway mediates adverse regulatory and metabolic effects of hyperglycemia, specifically insulin resistance of glucose disposal. These mice can serve as a model system to study the mechanism for the regulation of glucose homeostasis by hexosamines.
Full Text
The Full Text of this article is available as a PDF (243.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aftring R. P., Manos P. N., Buse M. G. Catabolism of branched-chain amino acids by diaphragm muscles of fasted and diabetic rats. Metabolism. 1985 Aug;34(8):702–711. doi: 10.1016/0026-0495(85)90018-6. [DOI] [PubMed] [Google Scholar]
- Balkan B., Dunning B. E. Glucosamine inhibits glucokinase in vitro and produces a glucose-specific impairment of in vivo insulin secretion in rats. Diabetes. 1994 Oct;43(10):1173–1179. doi: 10.2337/diab.43.10.1173. [DOI] [PubMed] [Google Scholar]
- Bourey R. E., Koranyi L., James D. E., Mueckler M., Permutt M. A. Effects of altered glucose homeostasis on glucose transporter expression in skeletal muscle of the rat. J Clin Invest. 1990 Aug;86(2):542–547. doi: 10.1172/JCI114742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buse J. B., Yasuda K., Lay T. P., Seo T. S., Olson A. L., Pessin J. E., Karam J. H., Seino S., Bell G. I. Human GLUT4/muscle-fat glucose-transporter gene. Characterization and genetic variation. Diabetes. 1992 Nov;41(11):1436–1445. doi: 10.2337/diab.41.11.1436. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Counts D. F., Shaw W. N. Effect of carbohydrate structure and concentration on the non-enzymatic glycosylation and subsequent cross-linking of collagen. Diabetes Res. 1991 Jan;16(1):37–40. [PubMed] [Google Scholar]
- Crook E. D., Daniels M. C., Smith T. M., McClain D. A. Regulation of insulin-stimulated glycogen synthase activity by overexpression of glutamine: fructose-6-phosphate amidotransferase in rat-1 fibroblasts. Diabetes. 1993 Sep;42(9):1289–1296. doi: 10.2337/diab.42.9.1289. [DOI] [PubMed] [Google Scholar]
- Crook E. D., Zhou J., Daniels M., Neidigh J. L., McClain D. A. Regulation of glycogen synthase by glucose, glucosamine, and glutamine:fructose-6-phosphate amidotransferase. Diabetes. 1995 Mar;44(3):314–320. doi: 10.2337/diab.44.3.314. [DOI] [PubMed] [Google Scholar]
- Daniels M. C., Kansal P., Smith T. M., Paterson A. J., Kudlow J. E., McClain D. A. Glucose regulation of transforming growth factor-alpha expression is mediated by products of the hexosamine biosynthesis pathway. Mol Endocrinol. 1993 Aug;7(8):1041–1048. doi: 10.1210/mend.7.8.8232303. [DOI] [PubMed] [Google Scholar]
- Friedman J. E., Dohm G. L., Leggett-Frazier N., Elton C. W., Tapscott E. B., Pories W. P., Caro J. F. Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4. J Clin Invest. 1992 Feb;89(2):701–705. doi: 10.1172/JCI115638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman J. E., de Venté J. E., Peterson R. G., Dohm G. L. Altered expression of muscle glucose transporter GLUT-4 in diabetic fatty Zucker rats (ZDF/Drt-fa). Am J Physiol. 1991 Dec;261(6 Pt 1):E782–E788. doi: 10.1152/ajpendo.1991.261.6.E782. [DOI] [PubMed] [Google Scholar]
- Garvey W. T. Glucose transport and NIDDM. Diabetes Care. 1992 Mar;15(3):396–417. doi: 10.2337/diacare.15.3.396. [DOI] [PubMed] [Google Scholar]
- Garvey W. T., Maianu L., Hancock J. A., Golichowski A. M., Baron A. Gene expression of GLUT4 in skeletal muscle from insulin-resistant patients with obesity, IGT, GDM, and NIDDM. Diabetes. 1992 Apr;41(4):465–475. doi: 10.2337/diab.41.4.465. [DOI] [PubMed] [Google Scholar]
- Garvey W. T., Olefsky J. M., Matthaei S., Marshall S. Glucose and insulin co-regulate the glucose transport system in primary cultured adipocytes. A new mechanism of insulin resistance. J Biol Chem. 1987 Jan 5;262(1):189–197. [PubMed] [Google Scholar]
- Hamann A., Benecke H., Le Marchand-Brustel Y., Susulic V. S., Lowell B. B., Flier J. S. Characterization of insulin resistance and NIDDM in transgenic mice with reduced brown fat. Diabetes. 1995 Nov;44(11):1266–1273. doi: 10.2337/diab.44.11.1266. [DOI] [PubMed] [Google Scholar]
- Hothersall J. S., Muirhead R. P., Taylaur C. E., Kunjara S., McLean P. Changes in uridine nucleotides and uridine nucleotide sugars in diabetic rat lens: implications in membrane glycoprotein formation. Biochem Med Metab Biol. 1993 Dec;50(3):292–300. doi: 10.1006/bmmb.1993.1071. [DOI] [PubMed] [Google Scholar]
- Kearse K. P., Hart G. W. Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1701–1705. doi: 10.1073/pnas.88.5.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koranyi L. I., Bourey R. E., Vuorinen-Markkola H., Koivisto V. A., Mueckler M., Permutt M. A., Yki-Järvinen H. Level of skeletal muscle glucose transporter protein correlates with insulin-stimulated whole body glucose disposal in man. Diabetologia. 1991 Oct;34(10):763–765. doi: 10.1007/BF00401526. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liu M. L., Olson A. L., Moye-Rowley W. S., Buse J. B., Bell G. I., Pessin J. E. Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J Biol Chem. 1992 Jun 15;267(17):11673–11676. [PubMed] [Google Scholar]
- Marshall S., Bacote V., Traxinger R. R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem. 1991 Mar 15;266(8):4706–4712. [PubMed] [Google Scholar]
- Olefsky J. M. Insulin resistance and the pathogenesis of non-insulin dependent diabetes mellitus: cellular and molecular mechanisms. Adv Exp Med Biol. 1993;334:129–150. doi: 10.1007/978-1-4615-2910-1_10. [DOI] [PubMed] [Google Scholar]
- Reason A. J., Morris H. R., Panico M., Marais R., Treisman R. H., Haltiwanger R. S., Hart G. W., Kelly W. G., Dell A. Localization of O-GlcNAc modification on the serum response transcription factor. J Biol Chem. 1992 Aug 25;267(24):16911–16921. [PubMed] [Google Scholar]
- Ren J. M., Marshall B. A., Mueckler M. M., McCaleb M., Amatruda J. M., Shulman G. I. Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J Clin Invest. 1995 Jan;95(1):429–432. doi: 10.1172/JCI117673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson K. A., Sens D. A., Buse M. G. Pre-exposure to glucosamine induces insulin resistance of glucose transport and glycogen synthesis in isolated rat skeletal muscles. Study of mechanisms in muscle and in rat-1 fibroblasts overexpressing the human insulin receptor. Diabetes. 1993 Sep;42(9):1333–1346. doi: 10.2337/diab.42.9.1333. [DOI] [PubMed] [Google Scholar]
- Robinson K. A., Weinstein M. L., Lindenmayer G. E., Buse M. G. Effects of diabetes and hyperglycemia on the hexosamine synthesis pathway in rat muscle and liver. Diabetes. 1995 Dec;44(12):1438–1446. doi: 10.2337/diab.44.12.1438. [DOI] [PubMed] [Google Scholar]
- Rossetti L., Giaccari A., DeFronzo R. A. Glucose toxicity. Diabetes Care. 1990 Jun;13(6):610–630. doi: 10.2337/diacare.13.6.610. [DOI] [PubMed] [Google Scholar]
- Roth M. Fluorescence reaction for amino acids. Anal Chem. 1971 Jun;43(7):880–882. doi: 10.1021/ac60302a020. [DOI] [PubMed] [Google Scholar]
- Traxinger R. R., Marshall S. Insulin regulation of pyruvate kinase activity in isolated adipocytes. Crucial role of glucose and the hexosamine biosynthesis pathway in the expression of insulin action. J Biol Chem. 1992 May 15;267(14):9718–9723. [PubMed] [Google Scholar]
- Trayhurn P., Duncan J. S., Nestor A., Thomas M. E., Rayner D. V. Chemiluminescent detection of mRNAs on northern blots with digoxigenin end-labeled oligonucleotides. Anal Biochem. 1994 Oct;222(1):224–230. doi: 10.1006/abio.1994.1477. [DOI] [PubMed] [Google Scholar]
- Yki-Järvinen H. Glucose toxicity. Endocr Rev. 1992 Aug;13(3):415–431. doi: 10.1210/edrv-13-3-415. [DOI] [PubMed] [Google Scholar]
- Zhou J., Neidigh J. L., Espinosa R., 3rd, LeBeau M. M., McClain D. A. Human glutamine: fructose-6-phosphate amidotransferase: characterization of mRNA and chromosomal assignment to 2p13. Hum Genet. 1995 Jul;96(1):99–101. doi: 10.1007/BF00214194. [DOI] [PubMed] [Google Scholar]