Abstract
Atrial natriuretic peptide (ANP) binds to natriuretic peptide receptor-A (NPR-A), a membrane guanylyl cyclase, and to natriuretic peptide receptor-C (NPR-C), which plays a role in peptide clearance. Rat ANP (rANP) mutants that bind rat NPR-A selectively over rat NPR-C were isolated from randomized libraries of rANP-display phage by differential panning. One variant was identified with reduced NPR-C binding; rANP (G16R, A17E, Q18A) [rANP(REA18)]. Synthetic rANP(REA18) was equipotent with rANP in stimulating cGMP production from cloned rat NPR-A (ED50 = 1.8 nM) and was reduced in NPR-C binding by approximately 200-fold. When infused into conscious rats at 0.325 microg/min for 30 min rANP elicited an identical decrease in blood pressure compared with 0.25 microg/min of rANP(REA18), however the natriuretic (P < 0.05) and diuretic (P = 0.07) responses to rANP(REA18) were greater. These data are consistent with a role for NPR-C as a local decoy receptor attenuating NPR-A effects in the kidney, where these receptors are coexpressed. Improved NPR-A specificity could provide more effective natriuretic peptides for treatment of acute renal failure or heart failure.
Full Text
The Full Text of this article is available as a PDF (203.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almeida F. A., Suzuki M., Scarborough R. M., Lewicki J. A., Maack T. Clearance function of type C receptors of atrial natriuretic factor in rats. Am J Physiol. 1989 Feb;256(2 Pt 2):R469–R475. doi: 10.1152/ajpregu.1989.256.2.R469. [DOI] [PubMed] [Google Scholar]
- Anand-Srivastava M. B., Trachte G. J. Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev. 1993 Dec;45(4):455–497. [PubMed] [Google Scholar]
- Bennett B. D., Bennett G. L., Vitangcol R. V., Jewett J. R., Burnier J., Henzel W., Lowe D. G. Extracellular domain-IgG fusion proteins for three human natriuretic peptide receptors. Hormone pharmacology and application to solid phase screening of synthetic peptide antisera. J Biol Chem. 1991 Dec 5;266(34):23060–23067. [PubMed] [Google Scholar]
- Blaine E. H., Heinel L. A., Schorn T. W., Marsh E. A., Whinnery M. A. The character of the atrial natriuretic response: pressure and volume effects. J Hypertens Suppl. 1986 Jun;4(2):S17–S24. [PubMed] [Google Scholar]
- Brenner B. M., Ballermann B. J., Gunning M. E., Zeidel M. L. Diverse biological actions of atrial natriuretic peptide. Physiol Rev. 1990 Jul;70(3):665–699. doi: 10.1152/physrev.1990.70.3.665. [DOI] [PubMed] [Google Scholar]
- Chabardès D., Montégut M., Mistaoui M., Butlen D., Morel F. Atrial natriuretic peptide effects on cGMP and cAMP contents in microdissected glomeruli and segments of the rat and rabbit nephrons. Pflugers Arch. 1987 Apr;408(4):366–372. doi: 10.1007/BF00581130. [DOI] [PubMed] [Google Scholar]
- Chinkers M., Garbers D. L., Chang M. S., Lowe D. G., Chin H. M., Goeddel D. V., Schulz S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature. 1989 Mar 2;338(6210):78–83. doi: 10.1038/338078a0. [DOI] [PubMed] [Google Scholar]
- Cunningham B. C., Lowe D. G., Li B., Bennett B. D., Wells J. A. Production of an atrial natriuretic peptide variant that is specific for type A receptor. EMBO J. 1994 Jun 1;13(11):2508–2515. doi: 10.1002/j.1460-2075.1994.tb06540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engel A. M., Schoenfeld J. R., Lowe D. G. A single residue determines the distinct pharmacology of rat and human natriuretic peptide receptor-C. J Biol Chem. 1994 Jun 24;269(25):17005–17008. [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Jin H., Mathews C., Chen Y. F., Yang R., Wyss J. M., Esunge P., Oparil S. Effects of acute and chronic blockade of neutral endopeptidase with Sch 34826 on NaCl-sensitive hypertension in spontaneously hypertensive rats. Am J Hypertens. 1992 Apr;5(4 Pt 1):210–218. doi: 10.1093/ajh/5.4.210. [DOI] [PubMed] [Google Scholar]
- John S. W., Krege J. H., Oliver P. M., Hagaman J. R., Hodgin J. B., Pang S. C., Flynn T. G., Smithies O. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995 Feb 3;267(5198):679–681. doi: 10.1126/science.7839143. [DOI] [PubMed] [Google Scholar]
- Kenny A. J., Bourne A., Ingram J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J. 1993 Apr 1;291(Pt 1):83–88. doi: 10.1042/bj2910083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koller K. J., Lowe D. G., Bennett G. L., Minamino N., Kangawa K., Matsuo H., Goeddel D. V. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science. 1991 Apr 5;252(5002):120–123. doi: 10.1126/science.1672777. [DOI] [PubMed] [Google Scholar]
- Koyama S., Terai T., Inoue T., Inomata K., Tamura K., Kobayashi Y., Kyogoku Y., Kobayashi M. An oxidized analog of alpha-human atrial natriuretic polypeptide is a selective agonist for the atrial-natriuretic-polypeptide clearance receptor which lacks a guanylate cyclase. Eur J Biochem. 1992 Feb 1;203(3):425–432. doi: 10.1111/j.1432-1033.1992.tb16566.x. [DOI] [PubMed] [Google Scholar]
- Li B., Tom J. Y., Oare D., Yen R., Fairbrother W. J., Wells J. A., Cunningham B. C. Minimization of a polypeptide hormone. Science. 1995 Dec 8;270(5242):1657–1660. doi: 10.1126/science.270.5242.1657. [DOI] [PubMed] [Google Scholar]
- Lowe D. G., Chang M. S., Hellmiss R., Chen E., Singh S., Garbers D. L., Goeddel D. V. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J. 1989 May;8(5):1377–1384. doi: 10.1002/j.1460-2075.1989.tb03518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maack T. Receptors of atrial natriuretic factor. Annu Rev Physiol. 1992;54:11–27. doi: 10.1146/annurev.ph.54.030192.000303. [DOI] [PubMed] [Google Scholar]
- Maack T., Suzuki M., Almeida F. A., Nussenzveig D., Scarborough R. M., McEnroe G. A., Lewicki J. A. Physiological role of silent receptors of atrial natriuretic factor. Science. 1987 Oct 30;238(4827):675–678. doi: 10.1126/science.2823385. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest. 1986 Jul;78(1):1–5. doi: 10.1172/JCI112536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nonoguchi H., Knepper M. A., Manganiello V. C. Effects of atrial natriuretic factor on cyclic guanosine monophosphate and cyclic adenosine monophosphate accumulation in microdissected nephron segments from rats. J Clin Invest. 1987 Feb;79(2):500–507. doi: 10.1172/JCI112840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nussenzveig D. R., Lewicki J. A., Maack T. Cellular mechanisms of the clearance function of type C receptors of atrial natriuretic factor. J Biol Chem. 1990 Dec 5;265(34):20952–20958. [PubMed] [Google Scholar]
- Okolicany J., McEnroe G. A., Koh G. Y., Lewicki J. A., Maack T. Clearance receptor and neutral endopeptidase-mediated metabolism of atrial natriuretic factor. Am J Physiol. 1992 Sep;263(3 Pt 2):F546–F553. doi: 10.1152/ajprenal.1992.263.3.F546. [DOI] [PubMed] [Google Scholar]
- Porter J. G., Arfsten A., Fuller F., Miller J. A., Gregory L. C., Lewicki J. A. Isolation and functional expression of the human atrial natriuretic peptide clearance receptor cDNA. Biochem Biophys Res Commun. 1990 Sep 14;171(2):796–803. doi: 10.1016/0006-291x(90)91216-f. [DOI] [PubMed] [Google Scholar]
- Ruskoaho H. Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev. 1992 Dec;44(4):479–602. [PubMed] [Google Scholar]
- Rutherford R. A., Wharton J., Needleman P., Polak J. M. Autoradiographic discrimination of brain and atrial natriuretic peptide-binding sites in the rat kidney. J Biol Chem. 1991 Mar 25;266(9):5819–5826. [PubMed] [Google Scholar]
- Sarzani R., Paci V. M., Dessì-Fulgheri P., Espinosa E., Rappelli A. Comparative analysis of atrial natriuretic peptide receptor expression in rat tissues. J Hypertens Suppl. 1993 Dec;11(5):S214–S215. [PubMed] [Google Scholar]
- Schoenfeld J. R., Sehl P., Quan C., Burnier J. P., Lowe D. G. Agonist selectivity for three species of natriuretic peptide receptor-A. Mol Pharmacol. 1995 Jan;47(1):172–180. [PubMed] [Google Scholar]
- Schultz H. D., Steele M. K., Gardner D. G. Central administration of atrial peptide decreases sympathetic outflow in rats. Am J Physiol. 1990 May;258(5 Pt 2):R1250–R1256. doi: 10.1152/ajpregu.1990.258.5.R1250. [DOI] [PubMed] [Google Scholar]
- Steinhelper M. E., Cochrane K. L., Field L. J. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990 Sep;16(3):301–307. doi: 10.1161/01.hyp.16.3.301. [DOI] [PubMed] [Google Scholar]
- Terada Y., Moriyama T., Martin B. M., Knepper M. A., Garcia-Perez A. RT-PCR microlocalization of mRNA for guanylyl cyclase-coupled ANF receptor in rat kidney. Am J Physiol. 1991 Dec;261(6 Pt 2):F1080–F1087. doi: 10.1152/ajprenal.1991.261.6.F1080. [DOI] [PubMed] [Google Scholar]
- Wilcox J. N., Augustine A., Goeddel D. V., Lowe D. G. Differential regional expression of three natriuretic peptide receptor genes within primate tissues. Mol Cell Biol. 1991 Jul;11(7):3454–3462. doi: 10.1128/mcb.11.7.3454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkins M. R., Settle S. L., Needleman P. Augmentation of the natriuretic activity of exogenous and endogenous atriopeptin in rats by inhibition of guanosine 3',5'-cyclic monophosphate degradation. J Clin Invest. 1990 Apr;85(4):1274–1279. doi: 10.1172/JCI114564. [DOI] [PMC free article] [PubMed] [Google Scholar]