Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Aug 15;98(4):996–1003. doi: 10.1172/JCI118884

The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration.

J Antoniou 1, T Steffen 1, F Nelson 1, N Winterbottom 1, A P Hollander 1, R A Poole 1, M Aebi 1, M Alini 1
PMCID: PMC507515  PMID: 8770872

Abstract

Very little is known about the turnover of extracellular matrix in the human intervertebral disc. We measured concentrations of specific molecules reflecting matrix synthesis and degradation in predetermined regions of 121 human lumbar intervertebral discs and correlated them with ageing and Thompson grade of degeneration. Synthesis in intervertebral discs, measured by immunoassay of the content of a putative aggrecan biosynthesis marker (846) and the content of types I and II procollagen markers, is highest in the neonatal and 2-5-yr age groups. The contents of these epitopes/molecules progressively diminished with increasing age. However, in the oldest age group (60-80 yr) and in highly degenerated discs, the type I procollagen epitope level increased significantly. The percentage of denatured type II collagen, assessed by the presence of an epitope that is exposed with cleavage of type II collagen, increased twofold from the neonatal discs to the young 2-5-yr age group. Thereafter, the percentage progressively decreased with increasing age; however, it increased significantly in the oldest group and in highly degenerate discs. We identified three matrix turnover phases. Phase I (growth) is characterized by active synthesis of matrix molecules and active denaturation of type II collagen. Phase II (maturation and ageing) is distinguished by a progressive drop in synthetic activity and a progressive reduction in denaturation of type 11 collagen. Phase III (degeneration and fibrotic) is illustrated by evidence for a lack of increased synthesis of aggrecan and type II procollagen, but also by an increase in collagen type II denaturation and type I procollagen synthesis, both dependent on age and grade of tissue degeneration.

Full Text

The Full Text of this article is available as a PDF (250.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aigner T., Bertling W., Stöss H., Weseloh G., von der Mark K. Independent expression of fibril-forming collagens I, II, and III in chondrocytes of human osteoarthritic cartilage. J Clin Invest. 1993 Mar;91(3):829–837. doi: 10.1172/JCI116303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alini M., Matsui Y., Dodge G. R., Poole A. R. The extracellular matrix of cartilage in the growth plate before and during calcification: changes in composition and degradation of type II collagen. Calcif Tissue Int. 1992 Apr;50(4):327–335. doi: 10.1007/BF00301630. [DOI] [PubMed] [Google Scholar]
  3. Antoniou J., Goudsouzian N. M., Heathfield T. F., Winterbottom N., Steffen T., Poole A. R., Aebi M., Alini M. The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine (Phila Pa 1976) 1996 May 15;21(10):1153–1161. doi: 10.1097/00007632-199605150-00006. [DOI] [PubMed] [Google Scholar]
  4. Bradford D. S., Oegema T. R., Jr, Cooper K. M., Wakano K., Chao E. Y. Chymopapain, chemonucleolysis, and nucleus pulposus regeneration. A biochemical and biomechanical study. Spine (Phila Pa 1976) 1984 Mar;9(2):135–147. doi: 10.1097/00007632-198403000-00004. [DOI] [PubMed] [Google Scholar]
  5. Buckwalter J. A. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 1995 Jun 1;20(11):1307–1314. doi: 10.1097/00007632-199506000-00022. [DOI] [PubMed] [Google Scholar]
  6. Burleigh M. C., Barrett A. J., Lazarus G. S. Cathepsin B1. A lysosomal enzyme that degrades native collagen. Biochem J. 1974 Feb;137(2):387–398. doi: 10.1042/bj1370387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bushell G. R., Ghosh P., Taylor T. F., Akeson W. H. Proteoglycan chemistry of the intervertebral disks. Clin Orthop Relat Res. 1977 Nov-Dec;(129):115–123. doi: 10.1097/00003086-197711000-00013. [DOI] [PubMed] [Google Scholar]
  8. Caterson B., Christner J. E., Baker J. R., Couchman J. R. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. Fed Proc. 1985 Feb;44(2):386–393. [PubMed] [Google Scholar]
  9. Cole T. C., Burkhardt D., Frost L., Ghosh P. The proteoglycans of the canine intervertebral disc. Biochim Biophys Acta. 1985 Apr 17;839(2):127–138. doi: 10.1016/0304-4165(85)90029-7. [DOI] [PubMed] [Google Scholar]
  10. Cole T. C., Ghosh P., Taylor T. K. Variations of the proteoglycans of the canine intervertebral disc with ageing. Biochim Biophys Acta. 1986 Feb 19;880(2-3):209–219. doi: 10.1016/0304-4165(86)90082-6. [DOI] [PubMed] [Google Scholar]
  11. Diamant B., Karlsson J., Nachemson A. Correlation between lactate levels and pH in discs of patients with lumbar rhizopathies. Experientia. 1968 Dec 15;24(12):1195–1196. doi: 10.1007/BF02146615. [DOI] [PubMed] [Google Scholar]
  12. Dodge G. R., Poole A. R. Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest. 1989 Feb;83(2):647–661. doi: 10.1172/JCI113929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eyre D. R., Muir H. Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta. 1977 May 27;492(1):29–42. doi: 10.1016/0005-2795(77)90211-2. [DOI] [PubMed] [Google Scholar]
  14. Eyre D. R., Muir H. Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J. 1976 Jul 1;157(1):267–270. doi: 10.1042/bj1570267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Farndale R. W., Buttle D. J., Barrett A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986 Sep 4;883(2):173–177. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
  16. Garvin P. J., Jennings R. B. Long-term effects of chymopapain on intervertebral disks of dogs. Clin Orthop Relat Res. 1973 May;(92):281–295. doi: 10.1097/00003086-197305000-00025. [DOI] [PubMed] [Google Scholar]
  17. Glant T. T., Mikecz K., Roughley P. J., Buzás E., Poole A. R. Age-related changes in protein-related epitopes of human articular-cartilage proteoglycans. Biochem J. 1986 May 15;236(1):71–75. doi: 10.1042/bj2360071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gower W. E., Pedrini V. Age-related variations in proteinpolysaccharides from human nucleus pulposus, annulus fibrosus, and costal cartilage. J Bone Joint Surg Am. 1969 Sep;51(6):1154–1162. [PubMed] [Google Scholar]
  19. Hadjipavlou A., Lander P., Antoniou J. The effect of chymopapain on low back pain. Orthop Rev. 1992 Jun;21(6):733–738. [PubMed] [Google Scholar]
  20. Heinegård D., Saxne T. Molecular markers of processes in cartilage in joint disease. Br J Rheumatol. 1991;30 (Suppl 1):21–24. [PubMed] [Google Scholar]
  21. Hinek A., Reiner A., Poole A. R. The calcification of cartilage matrix in chondrocyte culture: studies of the C-propeptide of type II collagen (chondrocalcin). J Cell Biol. 1987 May;104(5):1435–1441. doi: 10.1083/jcb.104.5.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hollander A. P., Heathfield T. F., Liu J. J., Pidoux I., Roughley P. J., Mort J. S., Poole A. R. Enhanced denaturation of the alpha (II) chains of type-II collagen in normal adult human intervertebral discs compared with femoral articular cartilage. J Orthop Res. 1996 Jan;14(1):61–66. doi: 10.1002/jor.1100140111. [DOI] [PubMed] [Google Scholar]
  23. Hollander A. P., Heathfield T. F., Webber C., Iwata Y., Bourne R., Rorabeck C., Poole A. R. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest. 1994 Apr;93(4):1722–1732. doi: 10.1172/JCI117156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Holm S., Maroudas A., Urban J. P., Selstam G., Nachemson A. Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res. 1981;8(2):101–119. doi: 10.3109/03008208109152130. [DOI] [PubMed] [Google Scholar]
  25. Kempson G. E., Muir H., Pollard C., Tuke M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta. 1973 Feb 28;297(2):456–472. doi: 10.1016/0304-4165(73)90093-7. [DOI] [PubMed] [Google Scholar]
  26. Lohmander S., Antonopoulos C. A., Friberg U. Chemical and metabolic heterogeneity of chondroitin sulfate and keratin sulfate in guinea pig cartilage and nucleus pulposus. Biochim Biophys Acta. 1973 Apr 28;304(2):430–448. doi: 10.1016/0304-4165(73)90263-8. [DOI] [PubMed] [Google Scholar]
  27. Moore R. J., Osti O. L., Vernon-Roberts B., Fraser R. D. Changes in endplate vascularity after an outer anulus tear in the sheep. Spine (Phila Pa 1976) 1992 Aug;17(8):874–878. doi: 10.1097/00007632-199208000-00003. [DOI] [PubMed] [Google Scholar]
  28. Månsson B., Carey D., Alini M., Ionescu M., Rosenberg L. C., Poole A. R., Heinegård D., Saxne T. Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest. 1995 Mar;95(3):1071–1077. doi: 10.1172/JCI117753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nachemson A. Intradiscal measurements of pH in patients with lumbar rhizopathies. Acta Orthop Scand. 1969;40(1):23–42. doi: 10.3109/17453676908989482. [DOI] [PubMed] [Google Scholar]
  30. Nimni M. E. Collagen: structure, function, and metabolism in normal and fibrotic tissues. Semin Arthritis Rheum. 1983 Aug;13(1):1–86. doi: 10.1016/0049-0172(83)90024-0. [DOI] [PubMed] [Google Scholar]
  31. Oegema T. R., Jr Biochemistry of the intervertebral disc. Clin Sports Med. 1993 Jul;12(3):419–439. [PubMed] [Google Scholar]
  32. Ohshima H., Urban J. P. The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine (Phila Pa 1976) 1992 Sep;17(9):1079–1082. doi: 10.1097/00007632-199209000-00012. [DOI] [PubMed] [Google Scholar]
  33. Parfitt A. M., Simon L. S., Villanueva A. R., Krane S. M. Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with Iliac bone formation rates and comparison with total alkaline phosphatase. J Bone Miner Res. 1987 Oct;2(5):427–436. doi: 10.1002/jbmr.5650020510. [DOI] [PubMed] [Google Scholar]
  34. Pearce R. H., Grimmer B. J., Adams M. E. Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res. 1987;5(2):198–205. doi: 10.1002/jor.1100050206. [DOI] [PubMed] [Google Scholar]
  35. Pearce R. H., Mathieson J. M., Mort J. S., Roughley P. J. Effect of age on the abundance and fragmentation of link protein of the human intervertebral disc. J Orthop Res. 1989;7(6):861–867. doi: 10.1002/jor.1100070612. [DOI] [PubMed] [Google Scholar]
  36. Pearce R. H., Thompson J. P., Bebault G. M., Flak B. Magnetic resonance imaging reflects the chemical changes of aging degeneration in the human intervertebral disk. J Rheumatol Suppl. 1991 Feb;27:42–43. [PubMed] [Google Scholar]
  37. Poole A. R. Immunochemical markers of joint inflammation, skeletal damage and repair: where are we now? Ann Rheum Dis. 1994 Jan;53(1):3–5. doi: 10.1136/ard.53.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Prockop D. J., Kivirikko K. I., Tuderman L., Guzman N. A. The biosynthesis of collagen and its disorders (first of two parts). N Engl J Med. 1979 Jul 5;301(1):13–23. doi: 10.1056/NEJM197907053010104. [DOI] [PubMed] [Google Scholar]
  39. Rizkalla G., Reiner A., Bogoch E., Poole A. R. Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J Clin Invest. 1992 Dec;90(6):2268–2277. doi: 10.1172/JCI116113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rudert M., Tillmann B. Lymph and blood supply of the human intervertebral disc. Cadaver study of correlations to discitis. Acta Orthop Scand. 1993 Feb;64(1):37–40. doi: 10.3109/17453679308994524. [DOI] [PubMed] [Google Scholar]
  41. Schmidt M. B., Mow V. C., Chun L. E., Eyre D. R. Effects of proteoglycan extraction on the tensile behavior of articular cartilage. J Orthop Res. 1990 May;8(3):353–363. doi: 10.1002/jor.1100080307. [DOI] [PubMed] [Google Scholar]
  42. Thompson J. P., Pearce R. H., Schechter M. T., Adams M. E., Tsang I. K., Bishop P. B. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976) 1990 May;15(5):411–415. doi: 10.1097/00007632-199005000-00012. [DOI] [PubMed] [Google Scholar]
  43. Thonar E. J., Shinmei M., Lohmander L. S. Body fluid markers of cartilage changes in osteoarthritis. Rheum Dis Clin North Am. 1993 Aug;19(3):635–657. [PubMed] [Google Scholar]
  44. Venn G., Mason R. M. Biosynthesis and metabolism in vivo of intervertebral-disc proteoglycans in the mouse. Biochem J. 1983 Nov 1;215(2):217–225. doi: 10.1042/bj2150217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Venn G., Mason R. M. Changes in mouse intervertebral-disc proteoglycan synthesis with age. Hereditary kyphoscoliosis is associated with elevated synthesis. Biochem J. 1986 Mar 1;234(2):475–479. doi: 10.1042/bj2340475. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES