Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Aug 15;98(4):1021–1027. doi: 10.1172/JCI118862

Demyelination of the brain is associated with methionine adenosyltransferase I/III deficiency.

M E Chamberlin 1, T Ubagai 1, S H Mudd 1, W G Wilson 1, J V Leonard 1, J Y Chou 1
PMCID: PMC507518  PMID: 8770875

Abstract

Individuals deficient in hepatic methionine adenosyltransferase (MAT) activity (MAT I/III deficiency) have been demonstrated to contain mutations in the gene (MATA1) that encodes the major hepatic forms, MAT I and III. MAT I/III deficiency is characterized by isolated persistent hypermethioninemia and, in some cases, unusual breath odor. Most individuals with isolated hypermethioninemia have been free of major clinical difficulties. Therefore a definitive diagnosis of MAT I/III deficiency, which requires hepatic biopsy, is not routinely made. However, two individuals with isolated hypermethioninemia have developed abnormal neurological problems, including brain demyelination, suggesting that MAT I/III deficiency can be deleterious. In the present study we have examined the MATA1 gene of eight hypermethioninemic individuals, including the two with demyelination of the brain. Mutations that abolish or reduce the MAT activity were detected in the MATA1 gene of all eight individuals. Both patients with demyelination are homozygous for mutations that alter the reading frame of the encoded protein such that the predicted MATalpha1 subunits are truncated and enzymatically inactive. The product of MAT, S-adenosylmethionine (AdoMet), is the major methyl donor for a large number of biologically important compounds including the two major myelin phospholipids, phosphatidylcholine and sphingomyelin. Both are synthesized primarily in the liver. Our findings demonstrate that isolated persistent hypermethioninemia is a marker of MAT I/III deficiency, and that complete lack of MAT I/III activity can lead to neurological abnormalities. Therefore, a DNA-based diagnosis should be performed for individuals with isolated hypermethioninemia to assess if therapy aimed at the prevention of neurological manifestations is warranted.

Full Text

The Full Text of this article is available as a PDF (422.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez L., Corrales F., Martín-Duce A., Mato J. M. Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies. Biochem J. 1993 Jul 15;293(Pt 2):481–486. doi: 10.1042/bj2930481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CATONI G. L. S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J Biol Chem. 1953 Sep;204(1):403–416. [PubMed] [Google Scholar]
  3. Cabrero C., Puerta J., Alemany S. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver. Eur J Biochem. 1987 Dec 30;170(1-2):299–304. doi: 10.1111/j.1432-1033.1987.tb13699.x. [DOI] [PubMed] [Google Scholar]
  4. Chida N., Arakawa T. Metabolism of phosphatidylcholine in brain and liver of developing rats. Tohoku J Exp Med. 1971 Aug;104(4):359–371. doi: 10.1620/tjem.104.359. [DOI] [PubMed] [Google Scholar]
  5. Cohen B. M., Renshaw P. F., Stoll A. L., Wurtman R. J., Yurgelun-Todd D., Babb S. M. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA. 1995 Sep 20;274(11):902–907. [PubMed] [Google Scholar]
  6. De La Rosa J., Ostrowski J., Hryniewicz M. M., Kredich N. M., Kotb M., LeGros H. L., Jr, Valentine M., Geller A. M. Chromosomal localization and catalytic properties of the recombinant alpha subunit of human lymphocyte methionine adenosyltransferase. J Biol Chem. 1995 Sep 15;270(37):21860–21868. doi: 10.1074/jbc.270.37.21860. [DOI] [PubMed] [Google Scholar]
  7. Finkelstein J. D., Kyle W. E., Martin J. J. Abnormal methionine adenosyltransferase in hypermethioninemia. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1491–1497. doi: 10.1016/0006-291x(75)90527-6. [DOI] [PubMed] [Google Scholar]
  8. Gahl W. A., Finkelstein J. D., Mullen K. D., Bernardini I., Martin J. J., Backlund P., Ishak K. G., Hoofnagle J. H., Mudd S. H. Hepatic methionine adenosyltransferase deficiency in a 31-year-old man. Am J Hum Genet. 1987 Jan;40(1):39–49. [PMC free article] [PubMed] [Google Scholar]
  9. Gaull G. E., Tallan H. H., Lonsdale D., Przyrembel H., Schaffner F., von Bassewitz D. B. Hypermethioninemia associated with methionine adenosyltransferase deficiency: clinical, morphologic, and biochemical observations on four patients. J Pediatr. 1981 May;98(5):734–741. doi: 10.1016/s0022-3476(81)80833-5. [DOI] [PubMed] [Google Scholar]
  10. Gaull G. E., Tallan H. H. Methionine adenosyltransferase deficiency: new enzymatic defect associated with hypermethioninemia. Science. 1974 Oct 4;186(4158):59–60. doi: 10.1126/science.186.4158.59. [DOI] [PubMed] [Google Scholar]
  11. Gout J. P., Serre J. C., Dieterlen M., Antener I., Frappat P., Bost M., Beaudoing A. Une nouvelle cause d'hyperméthioninémie de l'enfant: le deficit en S-adenosyl-méthionine-synthétase. Arch Fr Pediatr. 1977 May;34(5):416–423. [PubMed] [Google Scholar]
  12. Guimbal C., Kilimann M. W. A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem. 1993 Apr 25;268(12):8418–8421. [PubMed] [Google Scholar]
  13. Holliday R., Grigg G. W. DNA methylation and mutation. Mutat Res. 1993 Jan;285(1):61–67. doi: 10.1016/0027-5107(93)90052-h. [DOI] [PubMed] [Google Scholar]
  14. Horikawa S., Tsukada K. Molecular cloning and developmental expression of a human kidney S-adenosylmethionine synthetase. FEBS Lett. 1992 Nov 2;312(1):37–41. doi: 10.1016/0014-5793(92)81405-b. [DOI] [PubMed] [Google Scholar]
  15. Klein J., Köppen A., Löffelholz K., Schmitthenner J. Uptake and metabolism of choline by rat brain after acute choline administration. J Neurochem. 1992 Mar;58(3):870–876. doi: 10.1111/j.1471-4159.1992.tb09337.x. [DOI] [PubMed] [Google Scholar]
  16. Kotb M., Geller A. M. Methionine adenosyltransferase: structure and function. Pharmacol Ther. 1993 Aug;59(2):125–143. doi: 10.1016/0163-7258(93)90042-c. [DOI] [PubMed] [Google Scholar]
  17. Kotb M., Kredich N. M. S-Adenosylmethionine synthetase from human lymphocytes. Purification and characterization. J Biol Chem. 1985 Apr 10;260(7):3923–3930. [PubMed] [Google Scholar]
  18. Mitsui K., Teraoka H., Tsukada K. Complete purification and immunochemical analysis of S-adenosylmethionine synthetase from bovine brain. J Biol Chem. 1988 Aug 15;263(23):11211–11216. [PubMed] [Google Scholar]
  19. Mudd S. H., Levy H. L., Tangerman A., Boujet C., Buist N., Davidson-Mundt A., Hudgins L., Oyanagi K., Nagao M., Wilson W. G. Isolated persistent hypermethioninemia. Am J Hum Genet. 1995 Oct;57(4):882–892. [PMC free article] [PubMed] [Google Scholar]
  20. Okada G., Teraoka H., Tsukada K. Multiple species of mammalian S-adenosylmethionine synthetase. Partial purification and characterization. Biochemistry. 1981 Feb 17;20(4):934–940. doi: 10.1021/bi00507a045. [DOI] [PubMed] [Google Scholar]
  21. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ripley L. S. Frameshift mutation: determinants of specificity. Annu Rev Genet. 1990;24:189–213. doi: 10.1146/annurev.ge.24.120190.001201. [DOI] [PubMed] [Google Scholar]
  23. Sakata S. F., Shelly L. L., Ruppert S., Schutz G., Chou J. Y. Cloning and expression of murine S-adenosylmethionine synthetase. J Biol Chem. 1993 Jul 5;268(19):13978–13986. [PubMed] [Google Scholar]
  24. Stöckler S., Isbrandt D., Hanefeld F., Schmidt B., von Figura K. Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet. 1996 May;58(5):914–922. [PMC free article] [PubMed] [Google Scholar]
  25. Sullivan D. M., Hoffman J. L. Fractionation and kinetic properties of rat liver and kidney methionine adenosyltransferase isozymes. Biochemistry. 1983 Mar 29;22(7):1636–1641. doi: 10.1021/bi00276a017. [DOI] [PubMed] [Google Scholar]
  26. Surtees R., Leonard J., Austin S. Association of demyelination with deficiency of cerebrospinal-fluid S-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet. 1991 Dec 21;338(8782-8783):1550–1554. doi: 10.1016/0140-6736(91)92373-a. [DOI] [PubMed] [Google Scholar]
  27. Ubagai T., Lei K. J., Huang S., Mudd S. H., Levy H. L., Chou J. Y. Molecular mechanisms of an inborn error of methionine pathway. Methionine adenosyltransferase deficiency. J Clin Invest. 1995 Oct;96(4):1943–1947. doi: 10.1172/JCI118240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walker J. B. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:177–242. doi: 10.1002/9780470122952.ch4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES