Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Aug 15;98(4):1034–1046. doi: 10.1172/JCI118864

Susceptibility to hepatotoxicity in transgenic mice that express a dominant-negative human keratin 18 mutant.

N O Ku 1, S A Michie 1, R M Soetikno 1, E Z Resurreccion 1, R L Broome 1, R G Oshima 1, M B Omary 1
PMCID: PMC507520  PMID: 8770877

Abstract

Keratins 8 and 18 (K8/18) are intermediate filament phosphoglycoproteins that are expressed preferentially in simple-type epithelia. We recently described transgenic mice that express point-mutant human K18 (Ku, N.-O., S. Michie, R.G. Oshima, and M.B. Omary. 1995. J. Cell Biol. 131:1303-1314) and develop chronic hepatitis and hepatocyte fragility in association with hepatocyte keratin filament disruption. Here we show that mutant K18 expressing transgenic mice are highly susceptible to hepatotoxicity after acute administration of acetaminophen (400 mg/Kg) or chronic ingestion of griseofulvin (1.25% wt/wt of diet). The predisposition to hepatotoxicity results directly from the keratin mutation since nontransgenic or transgenic mice that express normal human K18 are more resistant. Hepatotoxicity was manifested by a significant difference in lethality, liver histopathology, and biochemical serum testing. Keratin glycosylation decreased in all griseofulvin-fed mice, whereas keratin phosphorylation increased dramatically preferentially in mice expressing normal K18. The phosphorylation increase in normal K18 after griseofulvin feeding appears to involve sites that are different to those that increase after partial hepatectomy. Our results indicate that hepatocyte intermediate filament disruption renders mice highly susceptible to hepatotoxicity, and raises the possibility that K18 mutations may predispose to drug hepatotoxicity. The dramatic phosphorylation increase in nonmutant keratins could provide survival advantage to hepatocytes.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Oshima R. G. A single human keratin 18 gene is expressed in diverse epithelial cells of transgenic mice. J Cell Biol. 1990 Sep;111(3):1197–1206. doi: 10.1083/jcb.111.3.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albers K. M., Davis F. E., Perrone T. N., Lee E. Y., Liu Y., Vore M. Expression of an epidermal keratin protein in liver of transgenic mice causes structural and functional abnormalities. J Cell Biol. 1995 Jan;128(1-2):157–169. doi: 10.1083/jcb.128.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amimoto T., Matsura T., Koyama S. Y., Nakanishi T., Yamada K., Kajiyama G. Acetaminophen-induced hepatic injury in mice: the role of lipid peroxidation and effects of pretreatment with coenzyme Q10 and alpha-tocopherol. Free Radic Biol Med. 1995 Aug;19(2):169–176. doi: 10.1016/0891-5849(94)00233-a. [DOI] [PubMed] [Google Scholar]
  4. Baribault H., Penner J., Iozzo R. V., Wilson-Heiner M. Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev. 1994 Dec 15;8(24):2964–2973. doi: 10.1101/gad.8.24.2964. [DOI] [PubMed] [Google Scholar]
  5. Baribault H., Price J., Miyai K., Oshima R. G. Mid-gestational lethality in mice lacking keratin 8. Genes Dev. 1993 Jul;7(7A):1191–1202. doi: 10.1101/gad.7.7a.1191. [DOI] [PubMed] [Google Scholar]
  6. Blessing M., Rüther U., Franke W. W. Ectopic synthesis of epidermal cytokeratins in pancreatic islet cells of transgenic mice interferes with cytoskeletal order and insulin production. J Cell Biol. 1993 Feb;120(3):743–755. doi: 10.1083/jcb.120.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bowden P. E., Haley J. L., Kansky A., Rothnagel J. A., Jones D. O., Turner R. J. Mutation of a type II keratin gene (K6a) in pachyonychia congenita. Nat Genet. 1995 Jul;10(3):363–365. doi: 10.1038/ng0795-363. [DOI] [PubMed] [Google Scholar]
  8. Bray G. P., Tredger J. M., Williams R. S-adenosylmethionine protects against acetaminophen hepatotoxicity in two mouse models. Hepatology. 1992 Feb;15(2):297–301. doi: 10.1002/hep.1840150220. [DOI] [PubMed] [Google Scholar]
  9. Cadrin M., Anderson N. M., Aasheim L. H., Kawahara H., Franks D. J., French S. W. Modifications in cytokeratin and actin in cultured liver cells derived from griseofulvin-fed mice. Lab Invest. 1995 Apr;72(4):453–460. [PubMed] [Google Scholar]
  10. Chan Y. M., Yu Q. C., Fine J. D., Fuchs E. The genetic basis of Weber-Cockayne epidermolysis bullosa simplex. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7414–7418. doi: 10.1073/pnas.90.15.7414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chou C. F., Omary M. B. Mitotic arrest with anti-microtubule agents or okadaic acid is associated with increased glycoprotein terminal GlcNAc's. J Cell Sci. 1994 Jul;107(Pt 7):1833–1843. doi: 10.1242/jcs.107.7.1833. [DOI] [PubMed] [Google Scholar]
  12. Chou C. F., Omary M. B. Mitotic arrest-associated enhancement of O-linked glycosylation and phosphorylation of human keratins 8 and 18. J Biol Chem. 1993 Feb 25;268(6):4465–4472. [PubMed] [Google Scholar]
  13. Chou C. F., Smith A. J., Omary M. B. Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J Biol Chem. 1992 Feb 25;267(6):3901–3906. [PubMed] [Google Scholar]
  14. Coulombe P. A., Hutton M. E., Letai A., Hebert A., Paller A. S., Fuchs E. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell. 1991 Sep 20;66(6):1301–1311. doi: 10.1016/0092-8674(91)90051-y. [DOI] [PubMed] [Google Scholar]
  15. Denk H., Eckerstorfer R., Talcott R. E., Schenkman J. B. Alteration of hepatic microsomal enzymes by griseofulvin treatment of mice. Biochem Pharmacol. 1977 Jun 15;26(12):1125–1130. doi: 10.1016/0006-2952(77)90055-7. [DOI] [PubMed] [Google Scholar]
  16. Denk H., Gschnait F., Wolff K. Hepatocellar hyalin (Mallory bodies) in long term griseofulvin-treated mice: a new experimental model for the study of hyalin formation. Lab Invest. 1975 Jun;32(6):773–776. [PubMed] [Google Scholar]
  17. Figlewicz D. A., Krizus A., Martinoli M. G., Meininger V., Dib M., Rouleau G. A., Julien J. P. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet. 1994 Oct;3(10):1757–1761. doi: 10.1093/hmg/3.10.1757. [DOI] [PubMed] [Google Scholar]
  18. Fuchs E., Chan Y. M., Paller A. S., Yu Q. C. Cracks in the foundation: keratin filaments and genetic disease. Trends Cell Biol. 1994 Sep;4(9):321–326. doi: 10.1016/0962-8924(94)90233-x. [DOI] [PubMed] [Google Scholar]
  19. Fuchs E., Coulombe P. A. Of mice and men: genetic skin diseases of keratin. Cell. 1992 Jun 12;69(6):899–902. doi: 10.1016/0092-8674(92)90607-e. [DOI] [PubMed] [Google Scholar]
  20. Fuchs E., Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi: 10.1146/annurev.bi.63.070194.002021. [DOI] [PubMed] [Google Scholar]
  21. Haltiwanger R. S., Kelly W. G., Roquemore E. P., Blomberg M. A., Dong L. Y., Kreppel L., Chou T. Y., Hart G. W. Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans. 1992 May;20(2):264–269. doi: 10.1042/bst0200264. [DOI] [PubMed] [Google Scholar]
  22. Hart G. W., Greis K. D., Dong L. Y., Blomberg M. A., Chou T. Y., Jiang M. S., Roquemore E. P., Snow D. M., Kreppel L. K., Cole R. N. O-linked N-acetylglucosamine: the "yin-yang" of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv Exp Med Biol. 1995;376:115–123. [PubMed] [Google Scholar]
  23. Ku N. O., Michie S., Oshima R. G., Omary M. B. Chronic hepatitis, hepatocyte fragility, and increased soluble phosphoglycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J Cell Biol. 1995 Dec;131(5):1303–1314. doi: 10.1083/jcb.131.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ku N. O., Omary M. B. Identification and mutational analysis of the glycosylation sites of human keratin 18. J Biol Chem. 1995 May 19;270(20):11820–11827. doi: 10.1074/jbc.270.20.11820. [DOI] [PubMed] [Google Scholar]
  25. Ku N. O., Omary M. B. Identification of the major physiologic phosphorylation site of human keratin 18: potential kinases and a role in filament reorganization. J Cell Biol. 1994 Oct;127(1):161–171. doi: 10.1083/jcb.127.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Liao J., Lowthert L. A., Ku N. O., Fernandez R., Omary M. B. Dynamics of human keratin 18 phosphorylation: polarized distribution of phosphorylated keratins in simple epithelial tissues. J Cell Biol. 1995 Dec;131(5):1291–1301. doi: 10.1083/jcb.131.5.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liao J., Lowthert L. A., Omary M. B. Heat stress or rotavirus infection of human epithelial cells generates a distinct hyperphosphorylated form of keratin 8. Exp Cell Res. 1995 Aug;219(2):348–357. doi: 10.1006/excr.1995.1238. [DOI] [PubMed] [Google Scholar]
  29. Lores Arnaiz S., Llesuy S., Cutrín J. C., Boveris A. Oxidative stress by acute acetaminophen administration in mouse liver. Free Radic Biol Med. 1995 Sep;19(3):303–310. doi: 10.1016/0891-5849(95)00023-q. [DOI] [PubMed] [Google Scholar]
  30. Lowthert L. A., Ku N. O., Liao J., Coulombe P. A., Omary M. B. Empigen BB: a useful detergent for solubilization and biochemical analysis of keratins. Biochem Biophys Res Commun. 1995 Jan 5;206(1):370–379. doi: 10.1006/bbrc.1995.1051. [DOI] [PubMed] [Google Scholar]
  31. McLean W. H., Lane E. B. Intermediate filaments in disease. Curr Opin Cell Biol. 1995 Feb;7(1):118–125. doi: 10.1016/0955-0674(95)80053-0. [DOI] [PubMed] [Google Scholar]
  32. McLean W. H., Rugg E. L., Lunny D. P., Morley S. M., Lane E. B., Swensson O., Dopping-Hepenstal P. J., Griffiths W. A., Eady R. A., Higgins C. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nat Genet. 1995 Mar;9(3):273–278. doi: 10.1038/ng0395-273. [DOI] [PubMed] [Google Scholar]
  33. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  34. Morley S. M., Dundas S. R., James J. L., Gupta T., Brown R. A., Sexton C. J., Navsaria H. A., Leigh I. M., Lane E. B. Temperature sensitivity of the keratin cytoskeleton and delayed spreading of keratinocyte lines derived from EBS patients. J Cell Sci. 1995 Nov;108(Pt 11):3463–3471. doi: 10.1242/jcs.108.11.3463. [DOI] [PubMed] [Google Scholar]
  35. Richard G., De Laurenzi V., Didona B., Bale S. J., Compton J. G. Keratin 13 point mutation underlies the hereditary mucosal epithelial disorder white sponge nevus. Nat Genet. 1995 Dec;11(4):453–455. doi: 10.1038/ng1295-453. [DOI] [PubMed] [Google Scholar]
  36. Rugg E. L., McLean W. H., Allison W. E., Lunny D. P., Macleod R. I., Felix D. H., Lane E. B., Munro C. S. A mutation in the mucosal keratin K4 is associated with oral white sponge nevus. Nat Genet. 1995 Dec;11(4):450–452. doi: 10.1038/ng1295-450. [DOI] [PubMed] [Google Scholar]
  37. Salmhofer H., Rainer I., Zatloukal K., Denk H. Posttranslational events involved in griseofulvin-induced keratin cytoskeleton alterations. Hepatology. 1994 Sep;20(3):731–740. [PubMed] [Google Scholar]
  38. Steer C. J. Liver regeneration. FASEB J. 1995 Nov;9(14):1396–1400. doi: 10.1096/fasebj.9.14.7589980. [DOI] [PubMed] [Google Scholar]
  39. Steinert P. M., Bale S. J. Genetic skin diseases caused by mutations in keratin intermediate filaments. Trends Genet. 1993 Aug;9(8):280–284. doi: 10.1016/0168-9525(93)90014-9. [DOI] [PubMed] [Google Scholar]
  40. Steinert P. M., Roop D. R. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  41. Theocharis S. E., Skopelitou A. S., Margeli A. P., Pavlaki K. J., Kittas C. Proliferating cell nuclear antigen (PCNA) expression in regenerating rat liver after partial hepatectomy. Dig Dis Sci. 1994 Feb;39(2):245–252. doi: 10.1007/BF02090193. [DOI] [PubMed] [Google Scholar]
  42. Vassar R., Coulombe P. A., Degenstein L., Albers K., Fuchs E. Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell. 1991 Jan 25;64(2):365–380. doi: 10.1016/0092-8674(91)90645-f. [DOI] [PubMed] [Google Scholar]
  43. WILSON M. E., STOWELL R. E., YOKOYAMA H. O., TSUBOI K. K. Cytological changes in regenerating mouse liver. Cancer Res. 1953 Jan;13(1):86–92. [PubMed] [Google Scholar]
  44. YOKOYAMA H. O., WILSON M. E., TSUBOI K. K., STOWELL R. E. Regeneration of mouse liver after partial hepatectomy. Cancer Res. 1953 Jan;13(1):80–85. [PubMed] [Google Scholar]
  45. Zimmerman H. J. Hepatotoxicity. Dis Mon. 1993 Oct;39(10):675–787. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES