Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Aug 15;98(4):1055–1062. doi: 10.1172/JCI118866

Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX-1 mutations lead to combined hypothalmic and pituitary defects in gonadotropin production.

R L Habiby 1, P Boepple 1, L Nachtigall 1, P M Sluss 1, W F Crowley Jr 1, J L Jameson 1
PMCID: PMC507522  PMID: 8770879

Abstract

Adrenal hypoplasia congenita (AHC) is an X-linked disorder that typically presents with adrenal insufficiency during infancy. Hypogonadotropic hypogonadism (HHG) has been identified as a component of this disorder in affected individuals who survive into childhood. Recently, AHC was shown to be caused by mutations in DAX-1, a protein that is structurally similar in its carboxyterminal region to orphan nuclear receptors. We studied two kindreds with clinical features of AHC and HHG. DAX-1 mutations were identified in both families. In the JW kindred, a single base deletion at nucleotide 1219 was accompanied by an additional base substitution that resulted in a frameshift mutation at codon 329 followed by premature termination. In the MH kindred, a GGAT duplication at codon 418 caused a frameshift that also resulted in truncation of DAX-1. Baseline luteinizing hormone (LIT), follicle-stimulating hormone (FSH), and free-alpha-subunit (FAS) levels were determined during 24 h of frequent (q10 min) venous sampling. In patient MH, baseline LH levels were low, but FAS levels were within the normal range. In contrast, in patient JW, the mean LH and FSH were within the normal range during baseline sampling, but LH secretion was erratic rather than showing typical pulses. FAS was apulsatile for much of the day, but a surge was seen over a 3-4-h period. Pulsatile gonadotropin releasing hormone (GnRH) (25 ng/kg) was administered every 2 h for 7 d to assess pituitary responsiveness to exogenous GnRH. MH did not exhibit a gonadotropin response to pulsatile GnRH. JW exhibited a normal response to the first pulse of GnRH, but there was no increase in FAS. In contrast to the priming effect of GnRH in GnRH-deficient patients with Kallmann syndrome, GnRH pulses caused minimal secretory responses of LH and no FAS responses in patient JW. The initial LH response in patient JW implies a deficiency in hypothalamic GnRH. On the other hand, the failure to respond to pulsatile GnRH is consistent with a pituitary defect in gonadotropin production. These two cases exemplify the phenotypic heterogeneity of AHC/HHG, and suggest that DAX-1 mutations impair gonadotropin production by acting at both the hypothalamic and pituitary levels.

Full Text

The Full Text of this article is available as a PDF (322.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnhart K. M., Mellon P. L. The orphan nuclear receptor, steroidogenic factor-1, regulates the glycoprotein hormone alpha-subunit gene in pituitary gonadotropes. Mol Endocrinol. 1994 Jul;8(7):878–885. doi: 10.1210/mend.8.7.7527122. [DOI] [PubMed] [Google Scholar]
  2. Bartley J. A., Miller D. K., Hayford J. T., McCabe E. R. Concordance of X-linked glycerol kinase deficiency with X-linked congenital adrenal hypoplasia. Lancet. 1982 Oct 2;2(8301):733–736. doi: 10.1016/s0140-6736(82)90921-7. [DOI] [PubMed] [Google Scholar]
  3. Beck-Peccoz P., Amr S., Menezes-Ferreira M. M., Faglia G., Weintraub B. D. Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism. Effect of treatment with thyrotropin-releasing hormone. N Engl J Med. 1985 Apr 25;312(17):1085–1090. doi: 10.1056/NEJM198504253121703. [DOI] [PubMed] [Google Scholar]
  4. Bovet P., Reymond M. J., Rey F., Gomez F. Lack of gonadotropic response to pulsatile gonadotropin-releasing hormone in isolated hypogonadotropic hypogonadism associated to congenital adrenal hypoplasia. J Endocrinol Invest. 1988 Mar;11(3):201–204. doi: 10.1007/BF03350135. [DOI] [PubMed] [Google Scholar]
  5. Burke B. A., Wick M. R., King R., Thompson T., Hansen J., Darrae B. T., Francke U., Seltzer W. K., McCabe E. R., Scheithauer B. W. Congenital adrenal hypoplasia and selective absence of pituitary luteinizing hormone: a new autosomal recessive syndrome. Am J Med Genet. 1988 Sep;31(1):75–97. doi: 10.1002/ajmg.1320310111. [DOI] [PubMed] [Google Scholar]
  6. Crowley W. F., Jr, Filicori M., Spratt D. I., Santoro N. F. The physiology of gonadotropin-releasing hormone (GnRH) secretion in men and women. Recent Prog Horm Res. 1985;41:473–531. doi: 10.1016/b978-0-12-571141-8.50015-9. [DOI] [PubMed] [Google Scholar]
  7. Crowley W. F., Jr, Whitcomb R. W., Jameson J. L., Weiss J., Finkelstein J. S., O'Dea L. S. Neuroendocrine control of human reproduction in the male. Recent Prog Horm Res. 1991;47:27–67. doi: 10.1016/b978-0-12-571147-0.50006-8. [DOI] [PubMed] [Google Scholar]
  8. Franco B., Guioli S., Pragliola A., Incerti B., Bardoni B., Tonlorenzi R., Carrozzo R., Maestrini E., Pieretti M., Taillon-Miller P. A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature. 1991 Oct 10;353(6344):529–536. doi: 10.1038/353529a0. [DOI] [PubMed] [Google Scholar]
  9. Golden M. P., Lippe B. M., Kaplan S. A. Congenital adrenal hypoplasia and hypogonadotropic hypogonadism. Am J Dis Child. 1977 Oct;131(10):1117–1118. doi: 10.1001/archpedi.1977.02120230063010. [DOI] [PubMed] [Google Scholar]
  10. Gordon D., Cohen H. N., Beastall G. H., Hay I. D., Thomson J. A. Contrasting effects of subcutaneous pulsatile GnRH therapy in congenital adrenal hypoplasia and Kallmann's syndrome. Clin Endocrinol (Oxf) 1984 Dec;21(6):597–603. doi: 10.1111/j.1365-2265.1984.tb01401.x. [DOI] [PubMed] [Google Scholar]
  11. Guo W., Burris T. P., McCabe E. R. Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis. Biochem Mol Med. 1995 Oct;56(1):8–13. doi: 10.1006/bmme.1995.1049. [DOI] [PubMed] [Google Scholar]
  12. Guo W., Mason J. S., Stone C. G., Jr, Morgan S. A., Madu S. I., Baldini A., Lindsay E. A., Biesecker L. G., Copeland K. C., Horlick M. N. Diagnosis of X-linked adrenal hypoplasia congenita by mutation analysis of the DAX1 gene. JAMA. 1995 Jul 26;274(4):324–330. [PubMed] [Google Scholar]
  13. Hall J. E., Schoenfeld D. A., Martin K. A., Crowley W. F., Jr Hypothalamic gonadotropin-releasing hormone secretion and follicle-stimulating hormone dynamics during the luteal-follicular transition. J Clin Endocrinol Metab. 1992 Mar;74(3):600–607. doi: 10.1210/jcem.74.3.1740493. [DOI] [PubMed] [Google Scholar]
  14. Hay I. D., Smail P. J., Forsyth C. C. Familial cytomegalic adrenocortical hypoplasia: an X-linked syndrome of pubertal failure. Arch Dis Child. 1981 Sep;56(9):715–721. doi: 10.1136/adc.56.9.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Honda S., Morohashi K., Nomura M., Takeya H., Kitajima M., Omura T. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem. 1993 Apr 5;268(10):7494–7502. [PubMed] [Google Scholar]
  16. Ikeda Y., Luo X., Abbud R., Nilson J. H., Parker K. L. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol. 1995 Apr;9(4):478–486. doi: 10.1210/mend.9.4.7659091. [DOI] [PubMed] [Google Scholar]
  17. Ingraham H. A., Lala D. S., Ikeda Y., Luo X., Shen W. H., Nachtigal M. W., Abbud R., Nilson J. H., Parker K. L. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev. 1994 Oct 1;8(19):2302–2312. doi: 10.1101/gad.8.19.2302. [DOI] [PubMed] [Google Scholar]
  18. Kelly W. F., Joplin G. F., Pearson G. W. Gonadotrophin deficiency and adrenocortical insufficiency in children: a new syndrome. Br Med J. 1977 Jul 9;2(6079):98–98. doi: 10.1136/bmj.2.6079.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kikuchi K., Kaji M., Momoi T., Mikawa H., Shigematsu Y., Sudo M. Failure to induce puberty in a man with X-linked congenital adrenal hypoplasia and hypogonadotropic hypogonadism by pulsatile administration of low-dose gonadotropin-releasing hormone. Acta Endocrinol (Copenh) 1987 Jan;114(1):153–160. doi: 10.1530/acta.0.1140153. [DOI] [PubMed] [Google Scholar]
  20. Kruse K., Sippell W. G., Schnakenburg K. V. Hypogonadism in congenital adrenal hypoplasia: evidence for a hypothalamic origin. J Clin Endocrinol Metab. 1984 Jan;58(1):12–17. doi: 10.1210/jcem-58-1-12. [DOI] [PubMed] [Google Scholar]
  21. Lala D. S., Rice D. A., Parker K. L. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol. 1992 Aug;6(8):1249–1258. doi: 10.1210/mend.6.8.1406703. [DOI] [PubMed] [Google Scholar]
  22. Legouis R., Hardelin J. P., Levilliers J., Claverie J. M., Compain S., Wunderle V., Millasseau P., Le Paslier D., Cohen D., Caterina D. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell. 1991 Oct 18;67(2):423–435. doi: 10.1016/0092-8674(91)90193-3. [DOI] [PubMed] [Google Scholar]
  23. Luo X., Ikeda Y., Parker K. L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994 May 20;77(4):481–490. doi: 10.1016/0092-8674(94)90211-9. [DOI] [PubMed] [Google Scholar]
  24. Luo X., Ikeda Y., Schlosser D. A., Parker K. L. Steroidogenic factor 1 is the essential transcript of the mouse Ftz-F1 gene. Mol Endocrinol. 1995 Sep;9(9):1233–1239. doi: 10.1210/mend.9.9.7491115. [DOI] [PubMed] [Google Scholar]
  25. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  26. Marshall J. C., Kelch R. P. Gonadotropin-releasing hormone: role of pulsatile secretion in the regulation of reproduction. N Engl J Med. 1986 Dec 4;315(23):1459–1468. doi: 10.1056/NEJM198612043152306. [DOI] [PubMed] [Google Scholar]
  27. Morohashi K., Hatano O., Nomura M., Takayama K., Hara M., Yoshii H., Takakusu A., Omura T. Function and distribution of a steroidogenic cell-specific transcription factor, Ad4BP. J Steroid Biochem Mol Biol. 1995 Jun;53(1-6):81–88. doi: 10.1016/0960-0760(95)00041-w. [DOI] [PubMed] [Google Scholar]
  28. Muscatelli F., Strom T. M., Walker A. P., Zanaria E., Récan D., Meindl A., Bardoni B., Guioli S., Zehetner G., Rabl W. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 1994 Dec 15;372(6507):672–676. doi: 10.1038/372672a0. [DOI] [PubMed] [Google Scholar]
  29. Partsch C. J., Sippell W. G. Hypothalamic hypogonadism in congenital adrenal hypoplasia. Horm Metab Res. 1989 Nov;21(11):623–625. doi: 10.1055/s-2007-1009303. [DOI] [PubMed] [Google Scholar]
  30. Petersen K. E., Bille T., Jacobsen B. B., Iversen T. X-linked congenital adrenal hypoplasia. A study of five generations of a Greenlandic Family. Acta Paediatr Scand. 1982 Nov;71(6):947–951. doi: 10.1111/j.1651-2227.1982.tb09554.x. [DOI] [PubMed] [Google Scholar]
  31. Prader A., Zachmann M., Illig R. Luteinizing hormone deficiency in hereditary congenital adrenal hypoplasia. J Pediatr. 1975 Mar;86(3):421–422. doi: 10.1016/s0022-3476(75)80978-4. [DOI] [PubMed] [Google Scholar]
  32. Sadovsky Y., Crawford P. A., Woodson K. G., Polish J. A., Clements M. A., Tourtellotte L. M., Simburger K., Milbrandt J. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10939–10943. doi: 10.1073/pnas.92.24.10939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Santen R. J., Bardin C. W. Episodic luteinizing hormone secretion in man. Pulse analysis, clinical interpretation, physiologic mechanisms. J Clin Invest. 1973 Oct;52(10):2617–2628. doi: 10.1172/JCI107454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sills I. N., Voorhess M. L., MacGillivray M. H., Peterson R. E. Prolonged survival without therapy in congenital adrenal hypoplasia. Am J Dis Child. 1983 Dec;137(12):1186–1188. doi: 10.1001/archpedi.1983.02140380046015. [DOI] [PubMed] [Google Scholar]
  35. Spencer C. A., LoPresti J. S., Patel A., Guttler R. B., Eigen A., Shen D., Gray D., Nicoloff J. T. Applications of a new chemiluminometric thyrotropin assay to subnormal measurement. J Clin Endocrinol Metab. 1990 Feb;70(2):453–460. doi: 10.1210/jcem-70-2-453. [DOI] [PubMed] [Google Scholar]
  36. Spratt D. I., O'Dea L. S., Schoenfeld D., Butler J., Rao P. N., Crowley W. F., Jr Neuroendocrine-gonadal axis in men: frequent sampling of LH, FSH, and testosterone. Am J Physiol. 1988 May;254(5 Pt 1):E658–E666. doi: 10.1152/ajpendo.1988.254.5.E658. [DOI] [PubMed] [Google Scholar]
  37. Taylor A. E., Khoury R. H., Crowley W. F., Jr A comparison of 13 different immunometric assay kits for gonadotropins: implications for clinical investigation. J Clin Endocrinol Metab. 1994 Jul;79(1):240–247. doi: 10.1210/jcem.79.1.8027235. [DOI] [PubMed] [Google Scholar]
  38. Uttley W. S. Familial congenital adrenal hypoplasia. Arch Dis Child. 1968 Dec;43(232):724–730. doi: 10.1136/adc.43.232.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Virdis R., Levine L. S., Levy D., Pang S., Rapaport R., New M. I. Congenital adrenal hypoplasia: two new cases. J Endocrinol Invest. 1983 Feb;6(1):51–54. doi: 10.1007/BF03350561. [DOI] [PubMed] [Google Scholar]
  40. Wang H., Segaloff D. L., Ascoli M. Lutropin/choriogonadotropin down-regulates its receptor by both receptor-mediated endocytosis and a cAMP-dependent reduction in receptor mRNA. J Biol Chem. 1991 Jan 15;266(2):780–785. [PubMed] [Google Scholar]
  41. Whitcomb R. W., Crowley W. F., Jr Clinical review 4: Diagnosis and treatment of isolated gonadotropin-releasing hormone deficiency in men. J Clin Endocrinol Metab. 1990 Jan;70(1):3–7. doi: 10.1210/jcem-70-1-3. [DOI] [PubMed] [Google Scholar]
  42. Whitcomb R. W., O'Dea L. S., Finkelstein J. S., Heavern D. M., Crowley W. F., Jr Utility of free alpha-subunit as an alternative neuroendocrine marker of gonadotropin-releasing hormone (GnRH) stimulation of the gonadotroph in the human: evidence from normal and GnRH-deficient men. J Clin Endocrinol Metab. 1990 Jun;70(6):1654–1661. doi: 10.1210/jcem-70-6-1654. [DOI] [PubMed] [Google Scholar]
  43. Whitcomb R. W., Sangha J. S., Schneyer A. L., Crowley W. F., Jr Improved measurement of free alpha subunit of glycoprotein hormones by assay with use of a monoclonal antibody. Clin Chem. 1988 Oct;34(10):2022–2025. [PubMed] [Google Scholar]
  44. Zachmann M., Illig R., Prader A. Gonadotropin deficiency and cryptorchidism in three prepubertal brothers with congenital adrenal hypoplasia. J Pediatr. 1980 Aug;97(2):255–257. doi: 10.1016/s0022-3476(80)80486-0. [DOI] [PubMed] [Google Scholar]
  45. Zanaria E., Muscatelli F., Bardoni B., Strom T. M., Guioli S., Guo W., Lalli E., Moser C., Walker A. P., McCabe E. R. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature. 1994 Dec 15;372(6507):635–641. doi: 10.1038/372635a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES